日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)如圖,在四棱錐P-ABCD中,AB∥DC,DC=2AB,AP=AD,PB⊥AC,BD⊥AC,E為PD的中點.求證:
          (1)AE∥平面PBC;
          (2)PD⊥平面ACE.
          分析:(1)要證明線面平行,需要構(gòu)造線面平行的判定定理的條件--在面PBC內(nèi)找到與AE平行的直線,取PC的中點F利用題目中的平行關(guān)系,可證得AE∥BF,即得AE∥BF.
          (2)由PB⊥AC,BD⊥AC可得AC⊥平面PBD,利用線面垂直的定義得AC⊥PD,然后由AP=AD,E為PD的中點得到PD⊥AE,由線面垂直的判定定理可得PD⊥平面ACE.
          解答:精英家教網(wǎng)證明:(1)取PC中點F,連接EF,BF,
          ∵E為PD中點,
          ∴EF∥DC且EF=
          1
          2
          DC

          ∵AB∥DC且AB=
          1
          2
          DC
          ,
          ∴EF∥AB且EF=AB.
          ∴四邊形ABFE為平行四邊形.
          ∴AE∥BF.
          ∵AE?平面PBC,BF?平面PBC,
          ∴AE∥平面PBC.
          (2)∵PB⊥AC,BD⊥AC,PB∩BD=B,
          ∴AC⊥平面PBD.
          ∵PD?平面PBD,
          ∴AC⊥PD.
          ∵AP=AD,E為PD的中點,
          ∴PD⊥AE.
          ∵AE∩AC=A,
          ∴PD⊥平面ACE.
          點評:本題考查了線面平行和線面垂直的判斷,考查數(shù)形結(jié)合、化歸與轉(zhuǎn)化的數(shù)學思想方法,是個中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
          2
          ,∠PAB=60°.
          (1)證明AD⊥PB;
          (2)求二面角P-BD-A的正切值大。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點A在PD上的射影為點G,點E在AB上,平面PEC⊥平面PDC.
          (1)求證:AG∥平面PEC;
          (2)求AE的長;
          (3)求二面角E-PC-A的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
          (Ⅰ)求證:平面PBD⊥平面PAC.
          (Ⅱ)求四棱錐P-ABCD的體積V.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點
          (1)求證;平面ACE⊥面ABCD;
          (2)求三棱錐P-EDC的體積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
          (1)求二面角P-CD-A的平面角正切值,
          (2)求A到面PCD的距離.

          查看答案和解析>>

          同步練習冊答案