【題目】定義在上的偶函數(shù)
滿足
,且
,當(dāng)
時,
.已知方程
在區(qū)間
上所有的實數(shù)根之和為
.將函數(shù)
的圖象向右平移
個單位長度,得到函數(shù)
的圖象,則
__________,
__________.
【答案】2 4
【解析】
根據(jù)函數(shù)為偶函數(shù)且
,所以
的周期為
,
的實數(shù)根是函數(shù)
和函數(shù)
的圖象的交點的橫坐標(biāo),在平面直角坐標(biāo)系中畫出函數(shù)圖象,根據(jù)函數(shù)的對稱性可得所有實數(shù)根的和為
,從而可得參數(shù)
的值,最后求出函數(shù)
的解析式,代入求值即可.
解:因為為偶函數(shù)且
,所以
的周期為
.因為
時,
,所以可作出
在區(qū)間
上的圖象,而方程
的實數(shù)根是函數(shù)
和函數(shù)
的圖象的交點的橫坐標(biāo),結(jié)合函數(shù)
和函數(shù)
在區(qū)間
上的簡圖,可知兩個函數(shù)的圖象在區(qū)間
上有六個交點.由圖象的對稱性可知,此六個交點的橫坐標(biāo)之和為
,所以
,故
.
因為,
所以.故
.
故答案為:;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,傾斜角為
的直線
的參數(shù)方程為
(
為參數(shù)).在以坐標(biāo)原點為極點,
軸正半軸為極軸的極坐標(biāo)系中,曲線
的極坐標(biāo)方程為
.
(1)求直線的普通方程與曲線
的直角坐標(biāo)方程;
(2)若直線與曲線
交于
,
兩點,且
,求直線
的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程(e為自然對數(shù)的底數(shù))有且僅有6個不等的實數(shù)解,則實數(shù)a的取值范圍是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一塊半徑為4米的圓形鐵皮,現(xiàn)打算利用這塊鐵皮做一個圓柱形油桶.具體做法是從中剪裁出兩塊全等的圓形鐵皮
與
做圓柱的底面,剪裁出一個矩形
做圓柱的側(cè)面(接縫忽略不計),
為圓柱的一條母線,點
在
上,點
在
的一條直徑上,
,
分別與直線
、
相切,都與
內(nèi)切.
(1)求圓形鐵皮半徑的取值范圍;
(2)請確定圓形鐵皮與
半徑的值,使得油桶的體積最大.(不取近似值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種商品在50個不同地區(qū)的零售價格全部介于13元與18元之間,將各地價格按如下方式分成五組:第一組,第二組
,……,第五組
.如圖是按上述分組方法得到的頻率分布直方圖.
(1)求價格落在內(nèi)的地區(qū)數(shù);
(2)借助頻率分布直方圖,估計該商品價格的中位數(shù)(精確到0.1);
(3)現(xiàn)從,
這兩組的全部樣本數(shù)據(jù)中,隨機(jī)選取兩個地區(qū)的零售價格,記為
,
,求事件“
”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)
在
處的切線方程;
(2)令,討論函數(shù)
的單調(diào)性;
(3)當(dāng)時,
,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)大學(xué)畢業(yè)后,決定利用所學(xué)專業(yè)進(jìn)行自主創(chuàng)業(yè),經(jīng)過市場調(diào)查,生產(chǎn)一小型電子產(chǎn)品需投入固定成本2萬元,每生產(chǎn)x萬件,需另投入流動成本C(x)萬元,當(dāng)年產(chǎn)量小于7萬件時,C(x)=x2+2x(萬元);當(dāng)年產(chǎn)量不小于7萬件時,C(x)=6x+1nx+
﹣17(萬元).已知每件產(chǎn)品售價為6元,假若該同學(xué)生產(chǎn)的產(chǎn)M當(dāng)年全部售完.
(1)寫出年利潤P(x)(萬元)關(guān)于年產(chǎn)量x(萬件)的函數(shù)解析式;(注:年利潤=年銷售收人﹣固定成本﹣流動成本
(2)當(dāng)年產(chǎn)量約為多少萬件時,該同學(xué)的這一產(chǎn)品所獲年利潤最大?最大年利潤是多少?(取e3≈20)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一塊三棱錐形木塊,各面均是銳角三角形,其中面
內(nèi)有一點
.
(1)若要在面內(nèi)過點
畫一條線段
,其中點
在線段
上,點
在線段
上,且滿足
與
垂直,該如何求作?請在圖中畫出線段
并說明畫法,不必證明;
(2)經(jīng)測量,,
,
,
,若
恰為三角形
的重心,
為(1)中所求線段,求三棱錐
的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com