【題目】某工廠在制造產(chǎn)品時(shí)需要用到長度為698mm的A型和長度為518mm的B型兩種鋼管,工廠利用長度為4000mm的鋼管原材料,裁剪成若干A型和B型鋼管。假設(shè)裁剪時(shí)損耗忽略不計(jì),裁剪后所剩廢料與原材料的百分比稱為廢料率.
(1)有兩種裁剪方案的廢料率小于4.5%,請(qǐng)說明這兩種方案并計(jì)算它們的廢料率;
(2)工廠現(xiàn)有100根原材料鋼管,一根A型和一根B型鋼管為一套毛胚。按(1)中的方案裁剪,最多可裁剪多少套毛胚?最終的廢料率為多少?
【答案】(1)方案一:,廢料率最小為
,方案二:
,廢料率第二小為
;(2)最多可裁剪320套毛胚,最終的廢料率為2.72%
【解析】
(1)設(shè)每根原材料可裁剪成根A型鋼管和
根B型鋼管,則
,得到方案再計(jì)算廢料率得到答案.
(2)設(shè)用方案一裁剪根原材料,用方案二裁剪
根原材料,共裁剪得
套毛胚,得到
時(shí),
,再計(jì)算廢料率得到答案.
(1)設(shè)每根原材料可裁剪成根A型鋼管和
根B型鋼管,則
,
方案一:,廢料率最小為
;
方案二:,廢料率第二小為
;
(2)設(shè)用方案一裁剪根原材料,用方案二裁剪
根原材料,共裁剪得
套毛胚,
則,
當(dāng),
套,廢料率為
綜上:最多可裁剪320套毛胚,最終的廢料率為2.72% .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知?jiǎng)訄A與軸相切于點(diǎn)
,過點(diǎn)
,
分別作動(dòng)圓異于
軸的兩切線,設(shè)兩切線相交于
,點(diǎn)
的軌跡為曲線
.
(1)求曲線的軌跡方程;
(2)過的直線
與曲線
相交于不同兩點(diǎn)
,若曲線
上存在點(diǎn)
,使得
成立,求實(shí)數(shù)
的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面中,△ABC的兩個(gè)頂點(diǎn)A、B的坐標(biāo)分別為A(﹣1,0),B (1,0),平面內(nèi)兩點(diǎn)G、M同時(shí)滿足下列條件:(1);(2)
;(3)
∥
,則△ABC的頂點(diǎn)C的軌跡方程為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線C的參數(shù)方程為
(α為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為
,(
).
(1)求曲線C的極坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于不同的兩點(diǎn),
,指出
的范圍,并求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知分別為橢圓
的左、右焦點(diǎn),
為該橢圓的一條垂直于
軸的動(dòng)弦,直線
與
軸交于點(diǎn)
,直線
與直線
的交點(diǎn)為
.
(1)證明:點(diǎn)恒在橢圓
上.
(2)設(shè)直線與橢圓
只有一個(gè)公共點(diǎn)
,直線
與直線
相交于點(diǎn)
,在平面內(nèi)是否存在定點(diǎn)
,使得
恒成立?若存在,求出該點(diǎn)坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為
,左右頂點(diǎn)分別為
,
,上頂點(diǎn)為
,
(1)求橢圓離心率;
(2)點(diǎn)到直線
的距離為
,求橢圓方程;
(3)在(2)的條件下,點(diǎn)在橢圓上且異于
、
兩點(diǎn),直線
與直線
交于點(diǎn)
,說明
運(yùn)動(dòng)時(shí)以
為直徑的圓與直線
的位置關(guān)系,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過雙曲線C:1(a>0,b>0)右焦點(diǎn)F2作雙曲線一條漸近線的垂線,垂足為P,與雙曲線交于點(diǎn)A,若
,則雙曲線C的漸近線方程為( )
A.y=±xB.y=±xC.y=±2xD.y=±
x
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)求的極大值點(diǎn);
(2)當(dāng),
時(shí),若過點(diǎn)
存在3條直線與曲線
相切,求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓
的左右焦點(diǎn)分別為的
、
,離心率為
;過拋物線
焦點(diǎn)
的直線交拋物線于
、
兩點(diǎn),當(dāng)
時(shí),
點(diǎn)在
軸上的射影為
。連結(jié)
并延長分別交
于
、
兩點(diǎn),連接
;
與
的面積分別記為
,
,設(shè)
.
(Ⅰ)求橢圓和拋物線
的方程;
(Ⅱ)求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com