日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax3+bx2+cx+d(a,b,c,d∈R),且函數(shù)f(x)的圖象關(guān)于原點(diǎn)
          對稱,其圖象在x=3處的切線方程為8x-y-18=0
          (1)求f(x)的解析式;
          (2)是否存在區(qū)間[m,n],使得函數(shù)g(x)的定義域和值域均為[m,n],且其解析式為f(x)的解析式?若存在,求出這樣一個(gè)區(qū)間[m,n];若不存在,則說明理由.
          分析:(1)根據(jù)題意,f(-x)+f(x)=0恒成立,利用比較系數(shù)法可得b=d=0,然后根據(jù)導(dǎo)數(shù)的幾何意義,得出f'(3)=8且f(3)=6,聯(lián)解方程組可得a、c的值,最終可得f(x)的解析式;
          (2)用直線y=x與函數(shù)y=f(x)聯(lián)解,得出交點(diǎn)橫坐標(biāo)為0或±
          6
          ,根據(jù)題意得出[m,n]可能的區(qū)間為[-
          6
          ,0] 或[0,
          6
          ] 或[-  
          6
           ,
          6
          ]
          .然后利用導(dǎo)數(shù)來研究函數(shù)f(x)的單調(diào)性,得出其單調(diào)區(qū)間后,分別討論它在各區(qū)間上的值域,對照題意可得符合條件的區(qū)間為[-
          6
          ,
          6
          ]
          解答:解:(1)∵f(x)的圖象關(guān)于原點(diǎn)對稱,
          ∴f(-x)+f(x)=0恒成立,
          即2bx2+2d=0,∴b=d=0
          又f(x)的圖象在x=3處的切線方程為8x-y-18=0,
          即y-6=8(x-3),…(2分)
          ∴f'(3)=8,且f(3)=6.而f(x)=ax3+cx,
          ∴f'(x)=3ax2+c…(3分)
          f′(3)=27a+c=8
          f(3)=27a+3c=6
          解得
          a=
          1
          3
          c=-1

          故所求的解析式為f(x)=
          1
          3
          x3-x
          .…(6分)
          (2)解
          y=
          1
          3
          x3-x
          y=x
          得x=0或x=±
          6

          又f'(x)=x2-1,由f'(x)=0得x=±1,
          且當(dāng)x=[-
          6
          ,-1)或x=(1,
          6
          ]
          時(shí),f'(x)>0;…(8分)
          當(dāng)x∈(-1,1)時(shí)f'(x)<0.
          f(x)在[-
          6
          ,-1]和[1,
          6
          ]
          遞增;在[-1,1]上遞減…(9分)
          f(x)在[-
          6
          ,
          6
          ]
          上的極大值和極小值分別為f(-1)=
          2
          3
          f(1)=-
          2
          3

          -
          6
          <-
          2
          3
          2
          3
          6

          故存在這樣的區(qū)間[m,n],其中一個(gè)區(qū)間為[-
          6
          ,
          6
          ]
          .…(12分)
          點(diǎn)評:本題考查了函數(shù)在某點(diǎn)取得極值的條件、利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值和導(dǎo)數(shù)的幾何意義等知識點(diǎn),屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時(shí),求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
           

          查看答案和解析>>

          同步練習(xí)冊答案