日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. .如圖,在四面體ABCD中,截面AEF經(jīng)過(guò)四面體的內(nèi)切球(與四個(gè)面都相切的球)球心O,且與BC,DC分別截于E、F,如果截面將四面體分成體積相等的兩部分,設(shè)四棱錐A-BEFD與三棱錐A-EFC的表面積分別是S1,S2,則S1:S2=_____  .

           

          【答案】

          1

          【解析】略

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)在Rt△ABC中,CA⊥CB,斜邊AB上的高為h1,則
          1
          h
          2
          1
          =
          1
          CA2
          +
          1
          CB2
          ;類(lèi)比此性質(zhì),如圖,在四面體P-ABC中,若PA,PB,PC兩兩垂直,底面ABC上的高為h,則得到的正確結(jié)論為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•商丘三模)如圖,在四面體ABCD中,CB=CD,AD⊥BD,點(diǎn)E,F(xiàn)分別是AB,BD的中點(diǎn).
          (Ⅰ)求證:平面EFC⊥平面BCD;
          (Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,求三棱錐B-ADC的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1
          (I)設(shè)P為線(xiàn)段AC的中點(diǎn),試在線(xiàn)段AB上求一點(diǎn)E,使得PE⊥OA;
          (II)求二面角O-AC-B的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2009•武漢模擬)如圖,在四面體A-BCD中,AB=AD=
          2
          ,BD=2,DC=1
          ,且BD⊥DC,二面角A-BD-C大小為60°.
          (1)求證:平面ABC上平面BCD;
          (2)求直線(xiàn)CD與平面ABC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在四面體ABOC中,OC⊥OA,OC⊥OB,∠AOB=120°,且OA=OB=OC=1.
          (1)求四面體ABOC的體積.
          (2)設(shè)P為AC的中點(diǎn),證明:在A(yíng)B上存在一點(diǎn)Q,使PQ⊥OA,并計(jì)算
          ABAQ
          的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案