日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在直角坐標系中,有一點列P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…對每一個正整數(shù)n,點Pn在給定的函數(shù),y=log3(2x)的圖象上,點Pn和點((n-1,0)與點(n,0)構(gòu)成一個以Pn為頂點的等腰三角形.
          (I) 求點Pn的縱坐標bn的表達式;
          (II) 記cn=,n∈N+
          ①證明;
          ②是否存在實數(shù)k,使得對一切n∈N+均成立,若存在,求出的最大值;若不存在,說明理由.
          【答案】分析:(Ⅰ)由題意可得,然后由點Pn在給定的函數(shù),y=log3(2x)的圖象可求bn
          (Ⅱ)①由cn==2n-1,然后利用錯位相減求和方法可求,然后進行證明
          ②由k恒成立,要求k的范圍,利用函數(shù)的單調(diào)性求解g(n)的最小值,從而k≤g(n)的最小值,即可求解k的范圍
          解答:解:(Ⅰ)∵Pn(an,bn),(n-1,0)與點(n,0)構(gòu)成一個以Pn為頂點的等腰三角形
                 …(2分)
          又因為點Pn在給定的函數(shù),y=log3(2x)的圖象
          ∴bn=log3(2n-1)…(4分)
          (Ⅱ)①∵cn==2n-1------------------(5分)
          設(shè)Dn=
          則Dn=
                  ②…(6分)
          由①-②得:

          =1+2-
          =3-<3--------(9分)
          ②由已知得k對一切n∈N+均成立.
          =×
          ==>1-------(12分)
          ∴g(n)單調(diào)遞增.最小值為g(1)=--------(13分)
          又∵k≤g(n)對一切n∈N+均成立.
          ∴k
          …(14分)
          點評:本題主要考查了數(shù)列的遞推公式的應(yīng)用,錯位相減求和方法的應(yīng)用,及函數(shù)的單調(diào)性在求解函數(shù)的最值中的應(yīng)用,函數(shù)的恒成立與函數(shù)最值求解的相互轉(zhuǎn)化.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          在直角坐標系中,有四點A(-1,2),B (0,1),C (1,2),D (x,y)同時位于一條拋物線上,則x與y滿足的關(guān)系式是
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖所示,在空間直角坐標系中,有一棱長為a的正方體ABCO-A′B′C′D′,A′C的中點E與AB的中點F的距離為( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          11.在平面直角坐標系中,有一定點(2,1),若線段的垂直平分線過拋物線的焦點,則該拋物線的準線方程是            .

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在直角坐標系中,有一組對角線長為的正方形

          其對角線依次放置在軸上(相鄰頂點重合).設(shè)是首項為,公差為的等差數(shù)列,點的坐標為.

          (1)當時,證明:頂點不在同一條直線上;

          (2)在(1)的條件下,證明:所有頂點均落在拋物線上;

          (3)為使所有頂點均落在拋物線上,求之間所應(yīng)滿足的關(guān)系式.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (本小題滿分13分)如圖,在直角坐標系中,有一組底邊長為的等腰直角三角形底邊依次放置在軸上(相鄰頂點重合),點的坐標為().

          (1)若b =1,,,求點A1,A2的坐標;

          (2)若在同一條直線上,求證:數(shù)列是等比數(shù)列;

          (3)若是正整數(shù),依次在函數(shù)的圖象上,且前三個等腰直角三角形面積之和不大于,求數(shù)列的通項公式.

          查看答案和解析>>

          同步練習冊答案