日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)求證:當a≥1時,不等式ex-x-1≤對于n∈R恒成立.
          (2)對于在(0,1)中的任一個常數(shù)a,問是否存在x>0使得ex-x-1≤成立?如果存在,求出符合條件的一個x;否則說明理由.
          【答案】分析:(1):分x≥0和x<0討論:(Ⅰ)在x≥0時,要使成立;(Ⅱ)在x≤0時,要使成立.利用導數(shù)研究函數(shù)的單調性,從而得到,原不等式在a≥1時,恒成立;
          (2)先將變形為,要找一個X>0,使此式成立,只需找到函數(shù)的最小值,滿足t(x)min<0即可,對t(x)求導數(shù),研究其單調性和最值,最后得出可找到一個常數(shù)x=-lna(0<a<1),使得不等式成立.
          解答:解:(1)證明:(Ⅰ)在x≥0時,要使成立.
          只需證:即需證:
          ,求導數(shù)
          ,又a≥1,求x≥0,故y'(x)≥0
          ∴y(x)為增函數(shù),故y(x)≥y(0)=1,從而①式得證
          (Ⅱ)在x≤0時,要使成立.
          只需證:,即需證:
          ,求導數(shù)得m'(x)=-xe-2x[ex+a(x-1)]
          而φ(x)=ex+a(x-1)在x≤0時為增函數(shù)
          故φ(x)≤φ(0)=1-a≤0,從而m(x)≤0
          ∴m(x)在x≤0時為減函數(shù),則m(x)≥m(0)=1,從而②式得證
          由于①②討論可知,原不等式在a≥1時,恒成立…(6分)
          (2)解:將變形為
          要找一個X>0,使③式成立,只需找到函數(shù)的最小值,
          滿足t(x)min<0即可,對t(x)求導數(shù)
          令t'(x)=0得,則x=-lna,取X=-lna
          在0<x<-lna時,t'(x)<0,在x>-lna時,t'(x)>0t(x)在x=-lna時,取得最小值
          下面只需證明:,在0<a<1時成立即可
          又令,對p(a)關于a求導數(shù)
          ,從而p(a)為增函數(shù)
          則p(a)<p(1)=0,從而得證
          于是t(x)的最小值t(-lna)<0
          因此可找到一個常數(shù)x=-lna(0<a<1),使得③式成立   …(14分)
          點評:利用導數(shù)工具討論函數(shù)的單調性,是求函數(shù)的值域和最值的常用方法,考查了分類討論的思想與轉化的思想.解決本題同時應注意研究導函數(shù)的單調性得出導數(shù)的正負,從而得出原函數(shù)的單調性的技巧.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          定義在R上的函數(shù)f(x)滿足:如果對任意x1,x2∈R,都有f(
          x1+x2
          2
          )≤
          1
          2
          [f(x1)+f(x2)]
          ,則稱f(x)是R上凹函數(shù).已知二次函數(shù)f(x)=ax2+x(a∈R,且a≠0).
          (1)求證:當a>0時,函數(shù)f(x)的凹函數(shù);
          (2)如果x∈[0,1]時,|f(x)|≤1,試求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)是定義在[-e,0)∪(0,e]上的奇函數(shù),當x∈(0,e]時,有f(x)=ax+lnx(其中e為自然對數(shù)的底,a∈R).
          (1)求函數(shù)f(x)的解析式;
          (2)設g(x)=
          ln|x|
          |x|
          ,x∈[-e,0)∪(0,e],求證:當a=-1時,|f(x)|>g(x)+
          1
          2
          ;
          (3)試問:是否存在實數(shù)a,使得當x∈[-e,0)時,f(x)的最小值是3?如果存在,求出實數(shù)a的值;如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知函數(shù)f(x)=2x+
          a
          x
          的定義域為(0,1](a為實數(shù)).
          (1)求證:當a=1時,函數(shù)y=f(x)在區(qū)間[
          2
          2
          ,1]上單調遞增;
          (2)當a>0時,函數(shù)y=f(x)在x∈(0,1]上是否有最大值和最小值,如果有,求出函數(shù)的最值以及相應的x的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)求證:當a≥1時,不等式ex-x-1≤
          ax2e|x|
          2
          對于n∈R恒成立.
          (2)對于在(0,1)中的任一個常數(shù)a,問是否存在x0>0使得ex0-x0-1≤
          ax02ex0
          2
          成立?如果存在,求出符合條件的一個x0;否則說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年江蘇省揚州中學高一(上)期中數(shù)學試卷(解析版) 題型:解答題

          定義在R上的函數(shù)f(x)滿足:如果對任意x1,x2∈R,都有,則稱f(x)是R上凹函數(shù).已知二次函數(shù)f(x)=ax2+x(a∈R,且a≠0).
          (1)求證:當a>0時,函數(shù)f(x)的凹函數(shù);
          (2)如果x∈[0,1]時,|f(x)|≤1,試求a的取值范圍.

          查看答案和解析>>

          同步練習冊答案