日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù) .

          (1)當(dāng)時(shí),求曲線處的切線方程;

          (2)求函數(shù)上的最小值(為自然對(duì)數(shù)的底數(shù));

          (3)是否存在實(shí)數(shù),使得對(duì)任意正實(shí)數(shù)均成立?若存在,求出所有滿足條件的實(shí)數(shù)的值;若不存在,請說明理由.

          【答案】(1);(2)詳見解析(3)當(dāng)且僅當(dāng)時(shí),符合題意

          【解析】

          (1)由題意,求得函數(shù)的導(dǎo)數(shù),進(jìn)而求得,,即可求得切線的方程;

          (2)求得函數(shù)的導(dǎo)數(shù),分類討論得到函數(shù)的單調(diào)性,進(jìn)而可求解函數(shù)的最值。

          (3)由題意,令,求得函數(shù)的導(dǎo)數(shù),令,利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性和最值,即可作出求解。

          (1)因?yàn)楹瘮?shù),且

          所以,

          所以

          所以,

          所以曲線處的切線方程是,即

          (2)因?yàn)楹瘮?shù),所以

          1°當(dāng)時(shí),,所以上單調(diào)遞增.

          所以函數(shù)上的最小值是

          2°當(dāng)時(shí),令,即,所以

          ,即,所以

          (i)當(dāng),即時(shí),上單調(diào)遞增,

          所以上的最小值是

          (ii)當(dāng),即時(shí),上單調(diào)遞減,在上單調(diào)

          遞增,所以上的最小值是

          (iii)當(dāng),即時(shí),上單調(diào)遞減,

          所以上的最小值是

          綜上所述,當(dāng)時(shí),上的最小值是

          當(dāng)時(shí),上的最小值是

          當(dāng)時(shí),上的最小值是.

          (3)令,

          ,且

          ,即,得.

          時(shí),

          ,則,則上是增函數(shù),

          ,則有

          當(dāng)時(shí),,當(dāng)時(shí),,

          所以當(dāng)時(shí),有極小值,也是最小值,則有

          成立

          當(dāng)時(shí),,(),

          ,

          所以在內(nèi)存在,使,即當(dāng)時(shí),有,

          是減函數(shù),則有,即這與不符,

          不成立;

          當(dāng)時(shí),

          ,

          是增函數(shù),則有,即這與不符;

          當(dāng)時(shí),則,則有

          ,這與不符合.

          綻上所述,當(dāng)且僅當(dāng)時(shí),在定義域上恒成立.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在如圖的程序框圖中,若輸入,,則輸出的值是( )

          [Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/21/1907086498037760/1907898837975040/STEM/25d20caaa911497ea3baaf4f7dee45a3.png]

          A. 3 B. 7 C. 11 D. 33

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某省的一個(gè)氣象站觀測點(diǎn)在連續(xù)4天里記錄的AQI指數(shù)M與當(dāng)天的空氣水平可見度(單位:cm)的情況如表1:

          900

          700

          300

          100

          0.5

          3.5

          6.5

          9.5

          該省某市2017年11月份AQI指數(shù)頻數(shù)分布如表2:

          頻數(shù)(天)

          3

          6

          12

          6

          3

          <>(1)設(shè),若之間是線性關(guān)系,試根據(jù)表1的數(shù)據(jù)求出關(guān)于的線性回歸方程;

          (2)小李在該市開了一家洗車店,洗車店每天的平均收入與AQI指數(shù)存在相關(guān)關(guān)系如表3:

          日均收入(元)

          -2000

          -1000

          2000

          6000

          8000

          根據(jù)表3估計(jì)小李的洗車店2017年11月份每天的平均收入.

          附參考公式:,其中,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

          (1)求橢圓的方程;

          (2)若不過原點(diǎn)的直線與橢圓相交于兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)fx=1-x2ex

          1)討論fx)的單調(diào)性;

          2)當(dāng)x≥0時(shí),fxax+1,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】[2018·贛中聯(lián)考]李冶(1192-1279),真實(shí)欒城(今屬河北石家莊市)人,金元時(shí)期的數(shù)學(xué)家、詩人,晚年在封龍山隱居講學(xué),數(shù)學(xué)著作多部,其中《益古演段》主要研究平面圖形問題:求圓的直徑、正方形的邊長等.其中一問:現(xiàn)有正方形方田一塊,內(nèi)部有一個(gè)圓形水池,其中水池的邊緣與方田四邊之間的面積為13.75畝,若方田的四邊到水池的最近距離均為二十步,則圓池直徑和方田的邊長分別是(注:240平方步為1畝,圓周率按3近似計(jì)算)(

          A. 10步,50 B. 20步,60 C. 30步,70 D. 40步,80

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對(duì)于集合和常數(shù),定義:為集合相對(duì)的“余弦方差”.

          (1)若集合,,求集合相對(duì)的“余弦方差”;

          (2)求證:集合相對(duì)任何常數(shù)的“余弦方差”是一個(gè)與無關(guān)的定值,并求此定值;

          (3)若集合,,,相對(duì)任何常數(shù)的“余弦方差”是一個(gè)與無關(guān)的定值,求出.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱,為棱的中點(diǎn),.

          (1)證明:平面;

          (2)設(shè)二面角的正切值為,為線段上一點(diǎn),且與平面所成角的正弦值為,求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某多面體的三視圖如圖所示,則該多面體的各棱中,最長棱的長度為( )

          A. B. C. 2 D. 1

          查看答案和解析>>

          同步練習(xí)冊答案