日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 19、定義在R上的函數(shù)f(x)同時滿足條件:①對定義域內(nèi)任意實數(shù)a,b,都有f(a+b)=f(a)•f(b);②x>0時,f(x)>1.那么,
          (1)試舉出滿足上述條件的一個具體函數(shù);
          (2)求f(0)的值;
          (3)比較f(1)和f(3)的大小并說明理由.
          分析:(1)由題設(shè)條件中所給的函數(shù)的性質(zhì)知此函數(shù)應(yīng)該是一個遞增的指數(shù)函數(shù),此類函數(shù)易找出;
          (2)令a>0,b=0,代入f(a+b)=f(a)•f(b),結(jié)合性質(zhì)②求出f(0)的值,
          (3)比較f(1)和f(3)的大小可由f(a+b)=f(a)•f(b),及性質(zhì)②說明理由.
          解答:解:(1)由題意知函數(shù)的性質(zhì)與遞增的指數(shù)函數(shù)的性質(zhì)相同,
          故可令f(x)=2x(或f(x)=ax(a>1));(4分)
          (2)令a>0,b=0,則f(a)=f(a)•f(0),而f(a)>0,
          ∴f(0)=1;(4分)
          (3)∵f(3)=f(1)+f(2),
          ∴f(3)-f(1)=f(2)>0,
          ∴f(1)<f(3)(4分)
          點評:本題考查求函數(shù)的值,解題的關(guān)鍵是理解函數(shù)的兩個性質(zhì),由兩個性質(zhì)對三個小題作出正確判斷.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
          π
          2
          ]時,f(x)=sinx,則f(
          3
          )的值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
          (1)求f(x)的解析式;
          (2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          定義在R上的函數(shù)f(x)滿足:f(x+2)=
          1-f(x)1+f(x)
          ,當(dāng)x∈(0,4)時,f(x)=x2-1,則f(2010)=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
          π
          2
          ),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數(shù)y=sin(2x+
          π
          3
          )圖象所有對稱中心都在f(x)圖象的對稱軸上.
          (1)求f(x)的表達式;    
          (2)若f(
          x0
          2
          )=
          3
          2
          (x0∈[-
          π
          2
          ,
          π
          2
          ]),求cos(x0-
          π
          3
          )的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對應(yīng)值表:
          x 0 1 2 3
          f(x) 3.1 0.1 -0.9 -3
          那么函數(shù)f(x)一定存在零點的區(qū)間是(  )

          查看答案和解析>>

          同步練習(xí)冊答案