日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 對任意實數(shù)x和整數(shù)n,已知f(sinx)=sin(4n+1)x,求f(cosx).

          答案:略
          解析:

          解:由f(sinx)=sin(4n1)x對任意實數(shù)均成立,且,得

          利用誘導(dǎo)公式及函數(shù)的意義求解.


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}是首項為15、公差為整數(shù)的等差數(shù)列,前n項的和是Sn,S11≥0,S12<0,Sn的最大值是S,函數(shù)y=f(x)滿足f(1+x)=f(5-x)對任意實數(shù)x都成立,且y=f(x) 的所有零點和恰好為S,則y=f(x)的零點的個數(shù)為
          15個
          15個

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2014•長寧區(qū)一模)設(shè)二次函數(shù)f(x)=(k-4)x2+kx
           (k∈R)
          ,對任意實數(shù)x,有f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
          (1)求函數(shù)f(x)的解析式和值域;
          (2)證明:當(dāng)an∈(0,
          1
          2
          )
          時,數(shù)列{an}在該區(qū)間上是遞增數(shù)列;
          (3)已知a1=
          1
          3
          ,是否存在非零整數(shù)λ,使得對任意n∈N*,都有log3(
          1
          1
          2
          -a1
          )+log3(
          1
          1
          2
          -a2
          )+…+log3(
          1
          1
          2
          -an
          )>-
          1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=x2+ax+b(a,b為實常數(shù)),數(shù)列{an},{bn}定義為:a1=
          1
          2
          ,2an+1=f(an)+15,bn=
          1
          2+an
          (n∈N*).已知不等式|f(x)≤2x2+4x-30|對任意實數(shù)x均成立.
          (1)求實數(shù)a,b的值;
          (2)若將數(shù)列{bn}的前n項和與乘積分別記為Sn和Tn,證明:對任意正整數(shù)n,2n+1Tn+Sn為定值;
          (3)證明:對任意正整數(shù)n,都有2[1-(
          4
          5
          n]≤Sn<2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

          對任意實數(shù)x和整數(shù)n,已知f(sinx)=sin(4n+1)x,求f(cosx).

          查看答案和解析>>

          同步練習(xí)冊答案