日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】函數(shù)的最大值為3,其圖象相鄰兩條對(duì)稱軸之間的距離為.

          (Ⅰ)求函數(shù)的解析式和當(dāng)時(shí)的單調(diào)減區(qū)間;

          (Ⅱ)的圖象向右平行移動(dòng)個(gè)長(zhǎng)度單位,再向下平移1個(gè)長(zhǎng)度單位,得到的圖象,用“五點(diǎn)法”作出內(nèi)的大致圖象.

          【答案】(Ⅰ),;(Ⅱ)圖象見(jiàn)解析.

          【解析】

          () 由函數(shù)的最大值為,可求得的值,由圖象相鄰兩條對(duì)稱軸之間的距離為可求得周期,從而確定的值,然后利用正弦函數(shù)的單調(diào)性解不式可得單調(diào)減區(qū)間,取特殊值即可得結(jié)果;()利用函數(shù)圖象的平移變換法則,可得到的解析式,列表、描點(diǎn)、作圖即可得結(jié)果.

          (Ⅰ)∵函數(shù)f(x)的最大值是3,

          A+1=3,即A=2.

          ∵函數(shù)圖象的相鄰兩條對(duì)稱軸之間的距離為,

          ∴最小正周期T=π,

          ∴ω=2.所以f(x)=2sin(2x-)+1

          +2kπ≤2x+2kπ,kZ,

          +kπ≤x≤+kπ,kZ,∵x[0,π],

          f(x)的單調(diào)減區(qū)間為[,].

          (Ⅱ)依題意得g(x)=f(x-)-1=2sin(2x-),

          列表得:

          描點(diǎn)

          連線得g(x)在[0,π]內(nèi)的大致圖象.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是為參數(shù)).

          (1)求直線和曲線的普通方程;

          (2)設(shè)直線和曲線交于兩點(diǎn),求

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),(其中,)的圖象與軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最高點(diǎn)為

          1)求的解析式;

          2)先把函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,然后再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,試寫出函數(shù)的解析式.

          3)在(2)的條件下,若存在,使得不等式成立,求實(shí)數(shù)的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】給出下列四個(gè)命題:

          ①在中,若,則;

          ②已知點(diǎn),則函數(shù)的圖象上存在一點(diǎn),使得;

          ③函數(shù)是周期函數(shù),且周期與有關(guān),與無(wú)關(guān);

          ④設(shè)方程的解是,方程的解是,則.

          其中真命題的序號(hào)是______.(把你認(rèn)為是真命題的序號(hào)都填上)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),其中常數(shù)

          (1)當(dāng)時(shí),討論的單調(diào)性

          (2)當(dāng)時(shí),是否存在整數(shù)使得關(guān)于的不等式在區(qū)間內(nèi)有解?若存在,求出整數(shù)的最小值;若不存在,請(qǐng)說(shuō)明理由.

          參考數(shù)據(jù):,,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】可組成不同的四位數(shù)的個(gè)數(shù)為__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓的兩個(gè)焦點(diǎn)與短軸的一個(gè)頂點(diǎn)構(gòu)成底邊為,頂角為的等腰三角形.

          (1)求橢圓的方程;

          (2)設(shè)、是橢圓上三動(dòng)點(diǎn),且,線段的中點(diǎn)為,,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)fx)=sinx,gx)=lnx

          1)求方程[02π]上的解;

          2)求證:對(duì)任意的aR,方程fx)=agx)都有解;

          3)設(shè)M為實(shí)數(shù),對(duì)區(qū)間[0,2π]內(nèi)的滿足x1x2x3x4的任意實(shí)數(shù)xi1i4),不等式成立,求M的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn)

          (1)求曲線、的直角坐標(biāo)方程;

          (2)若點(diǎn)在曲線上的兩個(gè)點(diǎn)且,求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案