日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知向量數(shù)學(xué)公式
          (1)求函數(shù)y=f(x)的解析式;
          (2)若函數(shù)f(x)的最小值為-3,求實(shí)數(shù)k的值;
          (3)若對(duì)任意實(shí)數(shù)x1,x2,x3,均存在以f(x1),f(x2),f(x3)為三邊長(zhǎng)的三角形,求實(shí)數(shù)k的取值范圍.

          解:(1)∵
          ∴(4x+1)(y-1)+2x(y-k)=0,化簡(jiǎn)整理得y(4x+2x+1)=4x+k•2x+1
          因此,函數(shù)y=f(x)的解析式為y=;
          (2)∵f(x)==1+
          ∴根據(jù)函數(shù)f(x)的最小值為-3,得t=的最小值為-4
          ∵2x+2-x+1≥2+1=3
          ∴當(dāng)k>1時(shí),=;當(dāng)k<1時(shí),=;
          k=1時(shí),函數(shù)f(x)=1恒成立不符合題意.
          ∴結(jié)合題意可得k<1,且當(dāng)且僅當(dāng)2x=2-x=1,即x=0時(shí),t的最小值為=-4,解之得k=-11
          即函數(shù)f(x)的最小值為-3時(shí),實(shí)數(shù)k的值為-11;
          (3)∵對(duì)任意實(shí)數(shù)x1、x2、x3,都存在以f(x1)、f(x2)、f(x3)為三邊長(zhǎng)的三角形,
          ∴f(x1)+f(x2)>f(x3)對(duì)任意的x1、x2、x3∈R恒成立.
          當(dāng)k>1時(shí),因?yàn)?<f(x1)+f(x2)≤且1<f(x3)≤
          ≤2,解之得1<k≤4;
          當(dāng)k=1時(shí),可得f(x1)=f(x2)=f(x3)=1,滿足題意的條件;
          當(dāng)k<1時(shí),因?yàn)?img class='latex' src='http://thumb.zyjl.cn/pic5/latex/79546.png' />≤f(x1)+f(x2)<2,且≤f(x3)<1,
          ≥1,解之得-≤k<1;
          綜上所述,實(shí)數(shù)k的取值范圍是[-,4]
          分析:(1)根據(jù)向量垂直的充要條件的坐標(biāo)表示式,建立關(guān)于x、y的等式,從中解出用x表示y的式子,即可得到函數(shù)y=f(x)的解析式.
          (2)將f(x)表達(dá)式的分子、分母都除以2x,得到它的分母2x+2-x+1≥2+1=3.再根據(jù)k與1的大小關(guān)系分類討論,即可得到必定有k<1,且當(dāng)2x=2-x=1即x=0時(shí),函數(shù)有最小值為-3,由此解關(guān)于k的等式即得實(shí)數(shù)k的值.
          (3)根據(jù)構(gòu)成三角形的條件,得出不等式f(x1)+f(x2)>f(x3)恒成立,然后分三種情況進(jìn)行討論,轉(zhuǎn)化為f(x1)+f(x2)的最小值與f(x3)的最大值的不等式,進(jìn)而可以求出實(shí)數(shù)k 的取值范圍.
          點(diǎn)評(píng):本題以向量的數(shù)量積運(yùn)算為載體,求函數(shù)的表達(dá)式并討論函數(shù)的最值.著重考查了向量數(shù)量積公式、基本不等式求最值、函數(shù)恒成立等知識(shí),屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (本小題10分) 已知向量

             (1)求函數(shù)的最小正周期; (2)求函數(shù)上的值域。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省黃岡市羅田縣育英高中高一(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

          已知向量
          (1)求函數(shù)y=f(x)的解析式;
          (2)若函數(shù)f(x)的最小值為-3,求實(shí)數(shù)k的值;
          (3)若對(duì)任意實(shí)數(shù)x1,x2,x3,均存在以f(x1),f(x2),f(x3)為三邊長(zhǎng)的三角形,求實(shí)數(shù)k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量

          (1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;

          (2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)先縮短到原來(lái)的,把所得到的圖象再向左平移單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知向量

          (1)求函數(shù)的單調(diào)遞減區(qū)間;

          (2)求函數(shù)的最大值及取得最大值時(shí)的x的取值集合

          查看答案和解析>>

          同步練習(xí)冊(cè)答案