日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R)在區(qū)間(0,1]上有零點x0 , 則 的最大值是

          【答案】
          【解析】解:由f(x0)=0得b=﹣x02﹣ax0,

          ∴ab=﹣ax02﹣a2x0=x0[a(﹣x0﹣a)]≤x0 = .(當(dāng)且僅當(dāng)a=﹣x0﹣a即x0=﹣2a時取等號)

          ∴ab( )≤ + ),

          令g(x0)= + ,則g′(x0)=x03﹣x02+ =x0(x0 )(x0 ),

          ∴g(x0)在(0, )上單調(diào)遞增,在( )上單調(diào)遞減,在( ,1)上單調(diào)遞增,

          又g( )= ,g(1)= = ,

          ∴g(x0)的最大值為

          的最大值為 =

          所以答案是:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在四棱錐PABCD中,PD⊥底面ABCD,底面ABCD為正方形,PDDCFPB的中點.求證:

          (1)DFAP.

          (2)在線段AD上是否存在點G,使GF⊥平面PBC?若存在,說明G點的位置,并證明你的結(jié)論;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】王先生家住 A 小區(qū),他工作在 B 科技園區(qū),從家開車到公司上班路上有 L1 , L2兩條路線(如圖),L1路線上有 A1 , A2 , A3三個路口,各路口遇到紅燈的概率均為 ;L2路線上有 B1 , B2兩個路.各路口遇到紅燈的概率依次為 , .若走 L1路線,王先生最多遇到 1 次紅燈的概率為;若走 L2路線,王先生遇到紅燈次數(shù) X 的數(shù)學(xué)期望為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)m∈R,函數(shù)f(x)=ex﹣m(x+1) m2(其中e為自然對數(shù)的底數(shù))
          (Ⅰ)若m=2,求函數(shù)f(x)的單調(diào)遞增區(qū)間;
          (Ⅱ)已知實數(shù)x1 , x2滿足x1+x2=1,對任意的m<0,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,求x1的取值范圍;
          (Ⅲ)若函數(shù)f(x)有一個極小值點為x0 , 求證f(x0)>﹣3,(參考數(shù)據(jù)ln6≈1.79)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知冪函數(shù)(mZ)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).

          (1)求函數(shù)f(x)的解析式;

          (2)設(shè)函數(shù),若g(x)>2對任意的xR恒成立,求實數(shù)c的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a∈R,函數(shù)f(x)滿足f(2x)=x2﹣2ax+a2﹣1.
          (Ⅰ)求f(x)的解析式,并寫出f(x)的定義域;
          (Ⅱ)若f(x)在 上的值域為[﹣1,0],求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】判斷下列函數(shù)的奇偶性.

          (1)f(x)=x2-|x|+1,x[-1,4]; (2)f(x)=;

          (3)f(x)=; (4)f(x)=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)= ,g(x)=a(x+b)(0<a≤1,b≤0).
          (1)討論函數(shù)y=f(x)g(x)的奇偶性;
          (2)當(dāng)b=0時,判斷函數(shù)y= 在(﹣1,1)上的單調(diào)性,并說明理由;
          (3)設(shè)h(x)=|af2(x)﹣ |,若h(x)的最大值為2,求a+b的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某廠今年擬舉行促銷活動,經(jīng)調(diào)查測算,該廠產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)x(萬件)與年促銷費m(萬元)(m≥0)滿足x=3-.已知今年生產(chǎn)的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家將每件產(chǎn)品的銷售價格定為每件產(chǎn)品平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

          (1)將今年該產(chǎn)品的利潤y萬元表示為年促銷費m(萬元)的函數(shù);

          (2)求今年該產(chǎn)品利潤的最大值,此時促銷費為多少萬元?

          查看答案和解析>>

          同步練習(xí)冊答案