日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知a>0,函數(shù)f(x)=x3-a,x∈[0,+∞),設(shè)x1>0,記曲線y=f(x)在點M(x1,f(x1))處的切線l.
          (1)求l的方程;
          (2)設(shè)l與x軸的交點是(x2,0),證明
          【答案】分析:(1)欲求在點(1,1)處的切線方程,只須求出其斜率的值即可,故先利用導(dǎo)數(shù)求出在x=1處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率,從而問題解決.
          (2)先在直線的方程中令y=0得到的x2值,欲證明.利用作差比較法即可.即利用因式分解的方法證x2-≥0即可.
          解答:解:(1)解:f'(x)=3x2(x>0).∵切線l經(jīng)過曲線f(x)=x3-a上的點M(x1,f(x1)),
          又∵切線l的斜率為k=f'(x1)=3x12
          據(jù)點斜式,得y-f(x1)=f'(x1)(x-x1),
          整理,得y=3x12•x-2x12-a,x1>0.
          因此直線l的方程為y=3x12x-2x13-a(x1>0);
          (2)證明:∵l與x軸交點為(x2,0),∴3x12x2-2x12-a=0,∵x1>0,a>0,

          由于,
          且x1>0,a>0,∴
          ,∴,
          當(dāng)且僅當(dāng),上式取“=”號.
          點評:本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點切線方程等基礎(chǔ)知識,考查運算求解能力.屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足關(guān)于x的方程2ax+b=0,則下列選項的命題中為假命題的是( 。
          A、?x∈R,f(x)≤f(x0B、?x∈R,f(x)≥f(x0C、?x∈R,f(x)≤f(x0D、?x∈R,f(x)≥f(x0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=ln(2-x)+ax.
          (1)求函數(shù)f(x)的單調(diào)區(qū)間;(2)設(shè)曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=ln(2-x)+ax.
          (1)設(shè)曲線y=f(x)在點(1,f(1))處的切線為l,若l與圓(x+1)2+y2=1相切,求a的值;
          (2)求函數(shù)f(x)的單調(diào)區(qū)間;
          (3)求函數(shù)f(x)在[0,1]上的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=lnx-ax2,x>0.(f(x)的圖象連續(xù)不斷)
          (Ⅰ)當(dāng)a=
          1
          8

          ①求f(x)的單調(diào)區(qū)間;
          ②證明:存在x0∈(2,+∞),使f(x0)=f(
          3
          2
          );
          (Ⅱ)若存在均屬于區(qū)間[1,3]的α,β,且β-α≥1,使f(α)=f(β),證明
          ln3-ln2
          5
          ≤a≤
          ln2
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a>0,函數(shù)f(x)=
          |x-2a|
          x+2a
          在區(qū)間[1,4]上的最大值等于
          1
          2
          ,則a的值為
           

          查看答案和解析>>

          同步練習(xí)冊答案