日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖所示,已知平面上三點A、B、C的坐標(biāo)分別為(-2,1)、(-1,3)、(3,4),求點D的坐標(biāo),使得這四點能構(gòu)成平行四邊形的四個頂點.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
          (1)將側(cè)面沿AB展開在同一個平面上,如圖②所示,求證:∠BAB′=90°.
          (2)求BM+MN+NB的最小值.
          (3)當(dāng)BM+MN+NB取得最小值時,證明:CD∥平面BMN

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
          (1)將側(cè)面沿AB展開在同一個平面上,如圖②所示,求證:∠BAB′=90°.
          (2)求BM+MN+NB的最小值.
          (3)當(dāng)BM+MN+NB取得最小值時,證明:CD∥平面BMN

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市新龍中學(xué)高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
          (1)將側(cè)面沿AB展開在同一個平面上,如圖②所示,求證:∠BAB′=90°.
          (2)求BM+MN+NB的最小值.
          (3)當(dāng)BM+MN+NB取得最小值時,證明:CD∥平面BMN

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省汕尾市陸豐市新龍中學(xué)高一(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
          (1)將側(cè)面沿AB展開在同一個平面上,如圖②所示,求證:∠BAB′=90°.
          (2)求BM+MN+NB的最小值.
          (3)當(dāng)BM+MN+NB取得最小值時,證明:CD∥平面BMN

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年廣東省廣州89中學(xué)高一(上)期末數(shù)學(xué)復(fù)習(xí)試卷(必修1、2)(解析版) 題型:解答題

          如圖,已知三棱錐A-BCD的底面是等邊三角形,三條側(cè)棱長都等于1,且∠BAC=30°,M,N分別在棱AC和AD上.
          (1)將側(cè)面沿AB展開在同一個平面上,如圖②所示,求證:∠BAB′=90°.
          (2)求BM+MN+NB的最小值.
          (3)當(dāng)BM+MN+NB取得最小值時,證明:CD∥平面BMN

          查看答案和解析>>

          同步練習(xí)冊答案