日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的短軸長為2,焦點坐標(biāo)分別是(-1,0)和(1,0).
          (1)求這個橢圓的標(biāo)準(zhǔn)方程;
          (2)如果直線y=x+m與這個橢圓交于不同的兩點A,B,求m的取值范圍;
          (3)若(2)中m=1,求該直線與此橢圓相交所得弦長|AB|的值.
          【答案】分析:(1)先由題分析出橢圓的焦點在x軸上且2b=2,c=1,求出a,b即可求橢圓的標(biāo)準(zhǔn)方程;
          (2)聯(lián)立直線方程與橢圓方程,整理為關(guān)于的一元二次方程;再結(jié)合直線y=x+m與這個橢圓交于不同的兩點知道對應(yīng)的方程有兩個不等實根,判別式大于0即可求出m的取值范圍;
          (3)求出A,B的坐標(biāo),即可求得弦長|AB|.
          解答:解:(1)由題得橢圓的焦點在x軸上且2b=2,c=1
          ∴b=,a2=b2+c2=4.
          ∴橢圓的標(biāo)準(zhǔn)方程為
          (2)直線y=x+m代入橢圓方程,消去y整理得:7x2+8mx+4m2-12=0.
          ∵直線y=x+m與這個橢圓交于不同的兩點
          ∴△=(8m)2-4×7×(4m2-12)>0
          ∴m2<7,∴-;
          (3)m=1時,7x2+8mx+4m2-12=0可化為7x2+8x-8=0
          ∴x=
          ∴y=
          ∴|AB|==
          點評:本題考查橢圓標(biāo)準(zhǔn)方程的求法,考查直線與橢圓的位置關(guān)系,考查學(xué)生的計算能力,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的短軸長為2
          3
          ,焦點坐標(biāo)分別是(-1,0)和(1,0).
          (1)求這個橢圓的標(biāo)準(zhǔn)方程;
          (2)如果直線y=x+m與這個橢圓交于不同的兩點A,B,求m的取值范圍;
          (3)若(2)中m=1,求該直線與此橢圓相交所得弦長|AB|的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的短軸長為2
          3
          ,焦點坐標(biāo)分別是(-1,0)和(1,0),
          (1)求這個橢圓的標(biāo)準(zhǔn)方程;
          (2)如果直線y=x+m與這個橢圓交于不同的兩點,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年黑龍江省雙鴨山一中高二(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          已知橢圓的短軸長為2,焦點坐標(biāo)分別是(-1,0)和(1,0),
          (1)求這個橢圓的標(biāo)準(zhǔn)方程;
          (2)如果直線y=x+m與這個橢圓交于不同的兩點,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年北京市東城區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

          已知橢圓的短軸長為2,且與拋物線有共同的焦點,橢圓C的左頂點為A,右頂點為B,點P是橢圓C上位于x軸上方的動點,直線AP,BP與直線y=3分別交于G,H兩點.
          (I)求橢圓C的方程;
          (Ⅱ)求線段GH的長度的最小值;
          (Ⅲ)在線段GH的長度取得最小值時,橢圓C上是否存在一點T,使得△TPA的面積為1,若存在求出點T的坐標(biāo),若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案