【題目】已知拋物線的焦點為
,其準(zhǔn)線與
軸的交點為
,過點
作直線與拋物線交于
兩點.若以
為直徑的圓過點
,則
的值為________.
【答案】4
【解析】
設(shè)直線方程,與拋物線方程聯(lián)立,借助于求出點A,B的橫坐標(biāo),利用拋物線的定義,即可求出|AF|﹣|BF|.
解:假設(shè)k存在,設(shè)AB方程為:y=k(x﹣1),
與拋物線y2=4x聯(lián)立得k2(x2﹣2x+1)=4x,
即k2x2﹣(2k2+4)x+k2=0
設(shè)兩交點為A(x2,y2),B(x1,y1),
∵以為直徑的圓過點
,
∴∠QBA=90°,
∴(x1﹣2)(x1+2)+y12=0,
∴x12+y12=4,
∴x12+4x1﹣1=0(x1>0),
∴x12,
∵x1x2=1,
∴x22,
∴|AF|﹣|BF|=(x2+1)﹣(x1+1)=4,
故答案為:4
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2014年7月18日15時,超強(qiáng)臺風(fēng)“威馬遜”登陸海南。畵(jù)統(tǒng)計,本次臺風(fēng)造成全省直接經(jīng)濟(jì)損失119.52億元.適逢暑假,小明調(diào)查住在自己小區(qū)的50戶居民由于臺風(fēng)造成的經(jīng)濟(jì)損失,作出如下頻率分布直方圖:
經(jīng)濟(jì)損失 4000元以下 | 經(jīng)濟(jì)損失 4000元以上 | 合計 | |
捐款超過500元 | 30 | ||
捐款低于500元 | 6 | ||
合計 |
(1)臺風(fēng)后區(qū)委會號召小區(qū)居民為臺風(fēng)重災(zāi)區(qū)捐款,小明調(diào)查的50戶居民捐款情況如上表,在表格空白處填寫正確數(shù)字,并說明是否有以上的把握認(rèn)為捐款數(shù)額是否多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(2)臺風(fēng)造成了小區(qū)多戶居民門窗損壞,若小區(qū)所有居民的門窗均由李師傅和張師傅兩人進(jìn)行維修,李師傅每天早上在7:00到8:00之間的任意時刻來到小區(qū),張師傅每天早上在7:30到8:30分之間的任意時刻來到小區(qū),求連續(xù)3天內(nèi),李師傅比張師傅早到小區(qū)的天數(shù)的數(shù)學(xué)期望.
附:臨界值表
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
如圖,長方體ABCD–A1B1C1D1的底面ABCD是正方形,點E在棱AA1上,BE⊥EC1.
(1)證明:BE⊥平面EB1C1;
(2)若AE=A1E,求二面角B–EC–C1的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓(
)的焦距為2,橢圓
的左右焦點分別為
,過右焦點
作
軸的垂線交橢圓于
兩點,
.
(1)求橢圓的方程;
(2)過右焦點作直線交橢圓于
兩點,若△
的內(nèi)切圓的面積為
,求△
的面積;
(3)已知,
為圓上一點(
在
軸右側(cè)),過
作圓的切線交橢圓
于
兩點,試問△
的周長是否為一定值?若是,求出該定值,若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),
為三維空間中
個點組成的有限集,其中任意四點不在一個平面上,將集合
中的點染成白色或黑色,使得任意一個與集合
至少交于四個點的球面具有這樣的性質(zhì):這些交點中恰有一半的點為白色的.證明:集合
中所有的點均在一個球面上,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)a=1時,若關(guān)于的不等式
恒成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線上的任意一點到兩定點
、
距離之和為
,直線
交曲線
于
兩點,
為坐標(biāo)原點.
(1)求曲線的方程;
(2)若不過點
且不平行于坐標(biāo)軸,記線段
的中點為
,求證:直線
的斜率與
的斜率的乘積為定值;
(3)若直線過點
,求
面積的最大值,以及取最大值時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2018年9月,臺風(fēng)“山竹”在我國多個省市登陸,造成直接經(jīng)濟(jì)損失達(dá)52億元.某青年志愿者組織調(diào)查了某地區(qū)的50個農(nóng)戶在該次臺風(fēng)中造成的直接經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成五組:,
,
,
,
(單位:元),得到如圖所示的頻率分布直方圖.
(1)試根據(jù)頻率分布直方圖估計該地區(qū)每個農(nóng)戶的平均損失(同一組中的數(shù)據(jù)用該組區(qū)間的中點值代表);
(2)臺風(fēng)后該青年志愿者與當(dāng)?shù)卣蛏鐣l(fā)出倡議,為該地區(qū)的農(nóng)戶捐款幫扶,現(xiàn)從這50戶并且損失超過4000元的農(nóng)戶中隨機(jī)抽取2戶進(jìn)行重點幫扶,設(shè)抽出損失超過8000元的農(nóng)戶數(shù)為,求
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在
處取得極值,對任意
恒成立,求實數(shù)
的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com