日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)T=
          (1)已知sin(π-θ )=,θ為鈍角,求T的值;
          (2)已知 cos(-θ )=m,θ 為鈍角,求T的值.
          【答案】分析:(1)由條件求出sinθ和cosθ 的值,代入T==進(jìn)行運算.
          (2)利用誘導(dǎo)公式、同角三角函數(shù)的基本關(guān)系求出sinθ和cosθ 的值,由T==|sinθ+cosθ|,分類討論去掉絕對值求得T值.
          解答:解:(1)由sin(π-θ)=,得 sinθ=,∵θ 為鈍角,∴cosθ=-
          ∴sin2θ=2sinθcosθ=,T==
          (2)由,∵θ為鈍角,∴,
          T==|sinθ+cosθ|,∵<θ<π,∴當(dāng)<θ<時,sinθ+cosθ>0,
          ∴T=sinθ+cosθ=m-,
          ∴當(dāng)<θ<π 時,sinθ+cosθ<0,∴T=-(sinθ+cosθ )=-m+
          點評:本題考查同角三角函數(shù)的基本關(guān)系,誘導(dǎo)公式的應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想,確定三角函數(shù)值的符號是解題的難點.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          數(shù)列{an}的前n項和記為Sn,前kn項和記為Skn(n,k∈N*),對給定的常數(shù)k,若
          S(k+1)n
          Skn
          是與n無關(guān)的非零常數(shù)t=f(k),則稱該數(shù)列{an}是“k類和科比數(shù)列”.
          (理科)(1)已知Sn=(
          an+1
          2
          )2,an>0
          ,求數(shù)列{an}的通項公式;
          (2)證明(1)的數(shù)列{an}是一個“k類和科比數(shù)列”;
          (3)設(shè)正數(shù)列{cn}是一個等比數(shù)列,首項c1,公比Q(Q≠1),若數(shù)列{lgcn}是一個“k類和科比數(shù)列”,探究c1與Q的關(guān)系.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          數(shù)列{an}的前n項和記為Sn,前kn項和記為Skn(n,k∈N*),對給定的常數(shù)k,若
          S(k+1)n
          Skn
          是與n無關(guān)的非零常數(shù)t=f(k),則稱該數(shù)列{an}是“k類和科比數(shù)列”.
          (1)已知Sn=
          4
          3
          an-
          2
          3
          (n∈N*)
          ,求數(shù)列{an}的通項公式;
          (2)在(1)的條件下,數(shù)列an=2cn,求證數(shù)列cn是一個“1 類和科比數(shù)列”(4分);
          (3)設(shè)等差數(shù)列{bn}是一個“k類和科比數(shù)列”,其中首項b1,公差D,探究b1與D的數(shù)量關(guān)系,并寫出相應(yīng)的常數(shù)t=f(k).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,拋物線C1:y2=8x與雙曲線C2
          x2
          a2
          -
          y2
          b2
          =1(a>0,b>0)有公共焦點F2,點A是曲線C1,C2在第一象限的交點,且|AF2|=5.
          (1)求雙曲線C2的方程;
          (2)以F1為圓心的圓M與雙曲線的一條漸近線相切,圓N:(x-2)2+y2=1,已知點P(1,
          3
          ),過點P作互相垂直且分別與圓M圓N相交的直線l1,l2,設(shè)l1被圓M截得的弦長為s,l2被圓N截得的弦長為t,
          s
          t
          是否為定值?請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)函數(shù)f(x)=
          3x-1
          x+1

          (1)已知s=-t+
          1
          2
          (t>1),求證:f(
          t-1
          t
          )=
          s+1
          s
          ;
          (2)證明:存在函數(shù)t=φ(s)=as+b(s>0),滿足f(
          s+1
          s
          )=
          t-1
          t
          ;
          (3)設(shè)x1=
          11
          17
          ,xn+1=f(xn),n=1,2,….問:數(shù)列{
          1
          xn-1
          }是否為等差數(shù)列?若是,求出數(shù)列{xn}中最大項的值;若不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2011•綿陽一模)己知函數(shù)f(x)=
          a
          x
          -1(其中a是不為0的實數(shù)),g(x)=lnx,設(shè)F(x)=f(x)+g(x).
          (Ⅰ)判斷函數(shù)F(x)在(0,3]上的單調(diào)性;
          (Ⅱ)已知s,t為正實數(shù),求證:ttex≥stet(其中e為自然對數(shù)的底數(shù));
          (Ⅲ)是否存在實數(shù)m,使得函數(shù)y=f(
          2a
          x2+1
          )+2m的圖象與函數(shù)y=g(x2+1)的圖象恰好有四個不同的交點?若存在,求出m的取值范圍,若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案