日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,三棱錐P―ABC中, PC平面ABC,PC=AC=2,

          AB=BC,D是PB上一點(diǎn),且CD平面PAB.

           (I) 求證:AB平面PCB;

           (II) 求異面直線AP與BC所成角的大。

          (III)求二面角C-PA-B的大。

          解法一:(I) ∵PC平面ABC,平面ABC,

          ∴PCAB.

          ∵CD平面PAB,平面PAB,

          ∴CDAB.

          ,

          ∴AB平面PCB.

          (II) 過點(diǎn)A作AF//BC,且AF=BC,連結(jié)PF,CF.

          為異面直線PA與BC所成的角

          由(Ⅰ)可得AB⊥BC,

          ∴CFAF.

          由三垂線定理,得PFAF.

          則AF=CF=,PF=,

          中,  tan∠PAF==,

          ∴異面直線PA與BC所成的角為

          (III)取AP的中點(diǎn)E,連結(jié)CE、DE.

          ∵PC=AC=2,∴CE PA,CE=

          ∵CD平面PAB,

          由三垂線定理的逆定理,得  DE PA.

          為二面角C-PA-B的平面角.

          由(I) AB平面PCB,又∵AB=BC,可求得BC=

            在中,PB=,

             

              在中, sin∠CED=

          ∴二面角C-PA-B的大小為arcsin

          解法二:(I)同解法一.

          (II) 由(I) AB平面PCB,∵PC=AC=2,

          又∵AB=BC,可求得BC=

          以B為原點(diǎn),如圖建立坐標(biāo)系.

          則A(0,,0),B(0,0,0),

          C(,0,0),P(,0,2).

          ,

              則+0+0=2.

              ==

             ∴異面直線AP與BC所成的角為

          (III)設(shè)平面PAB的法向量為m= (x,y,z).

          ,,

             即

          解得   令= -1,  得 m= (,0,-1).

             設(shè)平面PAC的法向量為n=().

          ,

           則   即

          解得   令=1,  得 n= (1,1,0).

              =

              ∴二面角C-PA-B的大小為arccos

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,三棱錐P-ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一點(diǎn),且CD⊥平面PAB
          (Ⅰ)求證:AB⊥平面PCB;
          (Ⅱ)求二面角C-PA-B的大小的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2006•石景山區(qū)一模)如圖,三棱錐P-ABC中,
          PA
          AB
          =
          PA
          AC
          =
          AB
          AC
          =0
          ,
          PA
          2
          =
          AC
          2
          =4
          AB
          2

          (Ⅰ)求證:AB⊥平面PAC;
          (Ⅱ)若M為線段PC上的點(diǎn),設(shè)
          |
          PM|
          |PC
          |
          ,問λ為何值時(shí)能使直線PC⊥平面MAB;
          (Ⅲ)求二面角C-PB-A的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•湖南模擬)如圖,三棱錐P-ABC中,側(cè)面PAC⊥底面ABC,∠APC=90°,且AB=4,AP=PC=2,BC=2
          2

          (Ⅰ)求證:PA⊥平面PBC;
          (Ⅱ)若E為側(cè)棱PB的中點(diǎn),求直線AE與底面ABC所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•德陽二模)如圖,三棱錐P-ABC中,PA丄面ABC,∠ABC=90°,PA=AB=1,BC=2,則P-ABC的外接球的表面積為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖在三棱錐P-ABC中,AB⊥PC,AC=2,BC=4,AB=2
          3
          ,∠PCA=30°.
          (1)求證:AB⊥平面PAC. (2)設(shè)二面角A-PC-B•的大小為θ•,求tanθ•的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案