日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在多面體ABCDEF中,四邊形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD.
          (1)求證:面DAF⊥面BAF.
          (2)求鈍二面角B-FC-D的大。
          分析:(1)要證兩個平面互相垂直,只要證明其中一個平面經(jīng)過另一個平面的一條垂線即可,由四邊形ABCD是矩形可知AD⊥AB,再由平面ABFE⊥平面ABCD可得AD⊥平面BAF,則結(jié)論得證;
          (2)分別以AD,AB,AE所在直線為x軸,y軸,z軸,建立的空間直角坐標(biāo)系,標(biāo)出用到的點的坐標(biāo),求出兩個平面BFC與CFD的一個法向量,利用平面法向量所成的角求二面角的大。
          解答:(1)證明:如圖,
          ∵平面ABFE⊥平面ABCD,AD⊥AB,
          ∴AD⊥平面BAF.
          又∵AD?面DAF,
          ∴面DAF⊥面BAF;
          (2)解:分別以AD,AB,AE所在直線為x軸,y軸,z軸,建立的空間直角坐標(biāo)系,
          則A(0,0,0)、D(1,0,0)、C(1,2,0)、E(0,0,1)、B(0,2,0)、F(0,1,1)
          DC
          =(0,2,0),
          DE
          =(-1,0,1)
          ,
          設(shè)
          n
          =(x,y,z)
          為平面CDFE的一個法向量,則
          n
          DC
          =0
          n
          DE
          =0
          ,
          2y=0
          -x+z=0
          ,令x=1,得z=1,
          所以
          n
          =(1,0,1)

          由平面ABEF⊥平面ABCD知,AF⊥BC,在△AFB中,AF=
          2
          ,AB=2,BF=
          2
          ,∴AF⊥面FBC.
          m
          =
          AF
          =(0,1,1)
          為平面BCF的一個法向量,
          cos<
          m
          ,
          n
          >=
          m
          n
          |
          m
          |•|
          n
          |
          =
          1
          2
          ,
          ∵二面角B-FC-D的平面角為鈍角,
          ∴鈍二面角B-FC-D的大小120°.
          點評:本題考查了平面與平面垂直的判定,考查了利用空間向量求二面角的大小,解答的關(guān)鍵在于建立正確的空間右手直角坐標(biāo)系,是中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1
          .
          BB1,AB=AC=AA1=
          2
          2
          BC,B1C1
          .
          1
          2
          BC

          (1)求證:A1B1⊥平面AA1C;
          (2)求證:AB1∥平面A1C1C;
          (3)求二面角C1-A1C-A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
          2
          AB
          ,B1C1
          .
          .
          1
          2
          BC
          ,二面角A1-AB-C是直二面角.
          (Ⅰ)求證:AB1∥平面 A1C1C;
          (Ⅱ)求BC與平面A1C1C所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
          12
          BC.
          (Ⅰ)求證:面A1AC⊥面ABC;
          (Ⅱ)求證:AB1∥面A1C1C.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•合肥一模)如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
          2
          2
          BC
          ,B1C1∥=
          1
          2
          BC

          (1)求證:A1B1⊥平面AA1C;
          (2)若D是BC的中點,求證:B1D∥平面A1C1C;
          (3)若BC=2,求幾何體ABC-A1B1C1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
          2
          AB,B1C1
          .
          1
          2
          BC
          ,二面角A1-AB-C是直二面角.
          (I)求證:A1B1⊥平面AA1C; 
          (II)求證:AB1∥平面 A1C1C;
          (II)求BC與平面A1C1C所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案