日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知等差數(shù)列{an}的首項a1=2,前n項和為Sn , 等比數(shù)列{bn}的首項b1=1,且a2=b3 , S3=6b2 , n∈N*
          (1)求數(shù)列{an}和{bn}的通項公式;
          (2)數(shù)列{cn}滿足cn=bn+(﹣1)nan , 記數(shù)列{cn}的前n項和為Tn , 求Tn

          【答案】
          (1)解:設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q.

          ∵a1=2,b1=1,且a2=b3,S3=6b2,n∈N*

          ∴2+d=q2,3×2+ =6q,

          聯(lián)立解得d=q=2.

          ∴an=2+2(n﹣1)=2n,bn=2n1


          (2)解:cn=bn+(﹣1)nan=2n1+(﹣1)n2n.

          ∴數(shù)列{cn}的前n項和為Tn=1+2+22+…+2n1+[﹣2+4﹣6+8+…+(﹣1)n2n]= +[﹣2+4﹣6+8+…+(﹣1)n2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n].

          ∴n為偶數(shù)時,Tn=2n﹣1+[(﹣2+4)+(﹣6+8)+…+(﹣2n+2+2n)].

          =2n﹣1+n.

          n為奇數(shù)時,Tn=2n﹣1+ ﹣2n.

          =2n﹣2﹣n.

          ∴Tn=


          【解析】(1)設(shè)等差數(shù)列{an}的公差為d,等比數(shù)列{bn}的公比為q.根據(jù)a1=2,b1=1,且a2=b3,S3=6b2,n∈N*

          可得2+d=q2,3×2+ =6q,聯(lián)立解得d,q.即可得出.(2)cn=bn+(﹣1)nan=2n1+(﹣1)n2n.可得數(shù)列{cn}的前n項和為Tn=1+2+22+…+2n1+[﹣2+4﹣6+8+…+(﹣1)n2n]=2n﹣1+[﹣2+4﹣6+8+…+(﹣1)n2n].對n分類討論即可得出.

          【考點精析】解答此題的關(guān)鍵在于理解數(shù)列的前n項和的相關(guān)知識,掌握數(shù)列{an}的前n項和sn與通項an的關(guān)系,以及對數(shù)列的通項公式的理解,了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】某程序框圖如圖所示,則該程序運行后輸出的S的值為(
          A.1
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】某學校有甲、乙兩個實驗班,為了了解班級成績,采用分層抽樣的方法從甲、乙兩個班學生中分別抽取8名和6名測試他們的數(shù)學成績與英語成績(單位:分),用表示(m,n).下面是乙班6名學生的測試分數(shù):A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(xiàn)(134,132),當學生的數(shù)學、英語成績滿足m≥135,且n≥130時,該學生定為優(yōu)秀學生.
          (1)已知甲班共有80名學生,用上述樣本數(shù)據(jù)估計乙班優(yōu)秀生的數(shù)量;
          (2)從乙班抽出的上述6名學生中隨機抽取3名,求至少有兩名優(yōu)秀生的概率;
          (3)從乙班抽出的上述6名學生中隨機抽取2名,其中優(yōu)秀生數(shù)記為ξ,求ξ的分布列和數(shù)學期望.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知數(shù)列{an}滿足: + +…+ = (n∈N*).
          (1)求數(shù)列{an}的通項公式;
          (2)若bn=anan+1 , Sn為數(shù)列{bn}的前n項和,對于任意的正整數(shù)n,Sn>2λ﹣ 恒成立,求實數(shù)λ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓C1與雙曲線C2有相同的左右焦點F1、F2 , P為橢圓C1與雙曲線C2在第一象限內(nèi)的一個公共點,設(shè)橢圓C1與雙曲線C2的離心率為e1 , e2 , 且 = ,若∠F1PF2= ,則雙曲線C2的漸近線方程為(
          A.x±y=0
          B.x± y=0
          C.x± y=0
          D.x±2y=0

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)點(a,b)是區(qū)域 內(nèi)的任意一點,則使函數(shù)f(x)=ax2﹣2bx+3在區(qū)間[ ,+∞)上是增函數(shù)的概率為( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】直線xy10被圓(x1)2y23截得的弦長等于(  )

          A. B. 2

          C. 2 D. 4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,三棱柱ABC﹣A1B1Cl中,M,N分別為CC1 , A1B1的中點.
          (I)證明:直線MN∥平面CAB1;
          (II)BA=BC=BB1 , CA=CB1 , CA⊥CB1 , ∠ABB1=60°,求平面AB1C和平面A1B1C1所成的角(銳角)的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】解答題
          (Ⅰ)討論函數(shù)f(x)= ex的單調(diào)性,并證明當x>0時,(x﹣2)ex+x+2>0;
          (Ⅱ)證明:當a∈[0,1)時,函數(shù)g(x)= (x>0)有最小值.設(shè)g(x)的最小值為h(a),求函數(shù)h(a)的值域.

          查看答案和解析>>

          同步練習冊答案