日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知A、B分別是直線上的兩個動點,線段AB的長為,D是AB的中點.
          (1)求動點D的軌跡C的方程;
          (2)過點N(1,0)作與x軸不垂直的直線l,交曲線C于P、Q兩點,若在線段ON上存在點M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形,試求m的取值范圍.
          【答案】分析:(1)先設(shè)出D與A,B的坐標,用中點坐標公式把點D表示出來,再代入弦長公式即可得動點D的軌跡C的方程;
          (2)把直線方程與軌跡C的方程聯(lián)立求出與P、Q兩點的坐標有關(guān)的等量關(guān)系,進而求出PQ的中點坐標,再利用菱形的對角線互相垂直即可求出m的取值范圍.
          解答:解:(1)設(shè)
          ∵D是線段AB的中點,∴,.(2分)
          ∵|AB|=,∴+=12,

          化簡得點D的軌跡C的方程為.(5分)
          (2)設(shè)l:y=k(x-1)(k≠0),代入橢圓,得(1+9k2)x2-18k2x+9k2-9=0,∴,∴.(7分)
          ∴PQ中點H的坐標為
          ∵以MP、MQ為鄰邊的平行四邊形是菱形,∴kMH•k=-1,
          ,即.(9分)
          ∵k≠0,∴.(11分)
          又點M(m,0)在線段ON上,∴0<m<1.
          綜上,.(12分)
          點評:本小題主要考查直線與圓錐曲線的綜合應(yīng)用能力,具體涉及到軌跡方程的求法及直線與圓錐曲線的相關(guān)知識.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知A、B分別是直線y=
          3
          3
          x
          y=-
          3
          3
          x
          上的兩個動點,線段AB的長為2
          3
          ,D是AB的中點.
          (1)求動點D的軌跡C的方程;
          (2)過點N(1,0)作與x軸不垂直的直線l,交曲線C于P、Q兩點,若在線段ON上存在點M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知A、B分別是直線y=
          3
          3
          x
          y=-
          3
          3
          x
          上的兩個動點,線段AB的長為2
          3
          ,P是AB的中點.
          (1)求動點P的軌跡C的方程;
          (2)過點Q(1,0)作直線l(與x軸不垂直)與軌跡C交于M、N兩點,與y軸交于點R.若
          RM
          MQ
          ,
          RN
          NQ
          ,證明:λ+μ為定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知A,B分別是直線y=x和y=-x上的兩個動點,線段AB的長為2
          3
          ,D是AB的中點.
          (1)求動點D的軌跡C的方程;
          (2)若過點(1,0)的直線l與曲線C交于不同兩點P、Q,
          ①當|PQ|=3時,求直線l的方程;
          ②設(shè)點E(m,0)是x軸上一點,求當
          PE
          QE
          恒為定值時E點的坐標及定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知A,B分別是直線y=x和y=-x上的兩個動點,線段AB的長為2
          3
          ,D是AB的中點.
          (1)求動點D的軌跡C的方程;
          (2)若過點(1,0)的直線l與曲線C交于不同兩點P、Q,
          ①當|PQ|=3時,求直線l的方程;
          ②試問在x軸上是否存在點E(m,0),使
          PE
          QE
          恒為定值?若存在,求出E點的坐標及定值;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知A、B分別是直線y=
          3
          3
          x
          y=-
          3
          3
          x
          上的兩個動點,線段AB的長為2
          3
          ,P是AB的中點.
          (1)求動點P的軌跡C的方程;
          (2)過點Q(1,0)任意作直線l(與x軸不垂直),設(shè)l與(1)中軌跡C交于M、N,與y軸交于R點.若
          RM
          MQ
          RN
          NQ
          ,證明:λ+μ 為定值.

          查看答案和解析>>

          同步練習(xí)冊答案