日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 點(diǎn)P(2,-3)在曲線x2-ay2=1上,則a的值為______________.

          解析:將P代入方程得a=.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,直線l1和l2相交于點(diǎn)M且l1⊥l2,點(diǎn)N∈l1.以A、B為端點(diǎn)的曲線段C上的任一點(diǎn)到l2的距離與到點(diǎn)N的距離相等.若△AMN為銳角三角形,|AM|=
          17
          ,|AN|=3,且|BN|=6.
          (1)曲線段C是哪類圓錐曲線的一部分?并建立適當(dāng)?shù)淖鴺?biāo)系,求曲線段C所在的圓錐曲線的標(biāo)準(zhǔn)方程;
          (2)在(1)所建的坐標(biāo)系下,已知點(diǎn)P(m,n)在曲線段C上,直線l:mx+ny=1,求直線l被圓x2+y2=1截得的弦長的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,成都市準(zhǔn)備在南湖的一側(cè)修建一條直路EF,另一側(cè)修建一條觀光大道,大道的前一部分為曲線段FBC,該曲線段是函數(shù)y=Asin(ωx+
          3
          ),(A>0,ω>0),x∈[-4,0]
          時(shí)的圖象,且圖象的最高點(diǎn)為B(-1,3),大道的中間部分為長1.5km的直線段CD,且CD∥EF.大道的后一部分是以O(shè)為圓心的一段圓弧DE.
          (1)求曲線段FBC的解析式,并求∠DOE的大小;
          (2)若南湖管理處要在圓弧大道所對應(yīng)的扇形DOE區(qū)域內(nèi)修建如圖所示的水上樂園PQMN,問點(diǎn)P落在圓弧DE上何處時(shí),水上樂園的面積最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•淮南二模)已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1,(a>b>0)與雙曲4x2-
          4
          3
          y2=1有相同的焦點(diǎn),且橢C的離心e=
          1
          2
          ,又A,B為橢圓的左右頂點(diǎn),M為橢圓上任一點(diǎn)(異于A,B).
          (1)求橢圓的方程;
          (2)若直MA交直x=4于點(diǎn)P,過P作直線MB的垂線x軸于點(diǎn)Q,Q的坐標(biāo);
          (3)求點(diǎn)P在直線MB上射R的軌跡方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•莆田模擬)如圖,邊長為3(百米)的正方形ABCD是一個(gè)觀光區(qū)的平面示意圖,中間葉形陰影部分MN是一片人工湖,它的左下方邊緣曲線段MN為函數(shù)y=
          2x
          (1≤x≤2)
          的圖象.為了便于游客觀光,擬在觀光區(qū)內(nèi)鋪設(shè)一條穿越該區(qū)域的直路l(寬度不計(jì)),其與人工湖左下方曲線段MN相切(切點(diǎn)記為P),并把該區(qū)域分為兩部分.現(xiàn)直路l左下部分區(qū)域規(guī)劃為花圃,記點(diǎn)P到邊AD距離為t,f(t)表示花圃的面積.
          (1)求直路l所在的直線與兩坐標(biāo)軸的交點(diǎn)坐標(biāo);
          (2)求面積f(t)的解析式;
          (3)請你制定一個(gè)鋪設(shè)方案,使得花圃面積最大,并求出最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2AB=2
          2

          (1)求異面直線PC與AD所成角的大。
          (2)若平面ABCD內(nèi)有一經(jīng)過點(diǎn)C的曲線E,該曲線上的任一動(dòng)點(diǎn)Q都滿足PQ與AD所成角的大小恰等PC與AD所成角.試判斷曲線E的形狀并說明理由;
          (3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動(dòng)點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段GC上運(yùn)動(dòng)時(shí),試提出一個(gè)研究有關(guān)四面P-BMN的問題(如體積、線面、面面關(guān)系等)并嘗試解決.
          (說明:本小題將根據(jù)你提出的問題的質(zhì)量和解決難度分層評分;本小題的計(jì)算結(jié)果可以使用近似值,保留3位小數(shù))

          查看答案和解析>>

          同步練習(xí)冊答案