日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 請(qǐng)?jiān)谙旅鎯深}中,任選一題作答:
          (1)(幾何證明選講選做題)已知PA是圓O的切線,切點(diǎn)為A,PA=2,AC是圓O的直徑,PC與圓O交于點(diǎn)B,PB=l,則圓O的半徑R=
          3
          3

          (2)(坐標(biāo)系與參數(shù)方程選做題)已知在極坐標(biāo)系下兩圓的極坐標(biāo)方程分別為ρ=cosθ,ρ=
          3
          sinθ
          ,則此兩圓的圓心距為
          1
          1
          分析:(1)連接AB,根據(jù)弦切角定理及三角形相似的判定,我們易得△PBA∽△PAC,再由相似三角形的性質(zhì),我們可以建立未知量與已知量之間的關(guān)系式,解方程即可求解.
          (2)把極坐標(biāo)方程化為直角坐標(biāo)方程,求出兩圓的圓心坐標(biāo),利用兩點(diǎn)間的距離公式求出此兩圓的圓心距.
          解答:解:(1)依題意,我們知道△PBA∽△PAC,
          由相似三角形的對(duì)應(yīng)邊成比例性質(zhì)我們有
          PA
          2R
          =
          PB
          AB

          即R=
          PA•AB
          2PB
          =
          2
          22-12
          2×1
          =
          3

          故答案為:
          3

          (2)ρ=cosθ   即 ρ2=ρcosθ,即x2+y2=x,即 (x-
          1
          2
          )2+y2=
          1
          4
          ,
          表示以M(
          1
          2
          ,0)為圓心,以
          1
          2
          為半徑的圓.
          ρ=
          3
          sinθ 即 ρ2=
          3
          ρ•sinθ,x2+y2=
          3
          y,即 x2+(y-
          3
          2
          )2=
          3
          4
          ,
          表示以N(0,
          3
          2
          )為圓心,以
          3
          2
          為半徑的圓.
          故兩圓的圓心距|MN|=
          (
          1
          2
          -0)2+(0-
          3
          2
          )2
          =1,
          故答案為:1.
          點(diǎn)評(píng):(1)考查圓的切線性質(zhì)、切割線定理或射影定理,(2)考查極坐標(biāo)方程與普通方程的互化.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (考生注意:請(qǐng)?jiān)谙旅鎯深}中任選一題作答,如果都做,則按所做第1題評(píng)分)
          (1)(坐標(biāo)系與參數(shù)方程選做題)
          曲線C1
          x=1+cosθ
          y=sinθ
          (θ為參數(shù))上的點(diǎn)到曲線C2
          x=-2
          2
          +
          1
          2
          t
          y=1-
          1
          2
          t
          (t為參數(shù))
          上的點(diǎn)的最短距離為
          1
          1

          (2)(幾何證明選講選做題)
          如圖,已知:△ABC內(nèi)接于圓O,點(diǎn)D在OC的延長(zhǎng)線上,AD是圓O的切線,若∠B=30°,AC=1,則AD的長(zhǎng)為
          3
          3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省寧波市八校聯(lián)考高二第二學(xué)期期末數(shù)學(xué)(理)試題 題型:解答題

          (請(qǐng)考生在下面甲、乙兩題中任選一題做答,如果多做,則按所做的甲題計(jì)分)

          甲題 :

          (1)若關(guān)于的不等式的解集不是空集,求實(shí)數(shù)的取值范圍;

          (2)已知實(shí)數(shù),滿足,求最小值.

          乙題:

          已知曲線C的極坐標(biāo)方程是=4cos。以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是是參數(shù))。

          (1)將曲線C的極坐標(biāo)方程化成直角坐標(biāo)方程并把直線的參數(shù)方程轉(zhuǎn)化為普通方程;

          (2) 若過(guò)定點(diǎn)的直線與曲線C相交于A、B兩點(diǎn),且,試求實(shí)數(shù)的值。

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年湖北省黃岡市英山一中高考數(shù)學(xué)模擬試卷1(理科)(解析版) 題型:解答題

          請(qǐng)?jiān)谙旅鎯深}中,任選一題作答:
          (1)(幾何證明選講選做題)已知PA是圓O的切線,切點(diǎn)為A,PA=2,AC是圓O的直徑,PC與圓O交于點(diǎn)B,PB=l,則圓O的半徑R=   
          (2)(坐標(biāo)系與參數(shù)方程選做題)已知在極坐標(biāo)系下兩圓的極坐標(biāo)方程分別為,則此兩圓的圓心距為   

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年湖北省黃岡市黃州一中高三(下)高考交流數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          (考生注意:請(qǐng)?jiān)谙旅鎯深}中任選一題作答,如果都做,則按所做第1題評(píng)分)
          (1)(坐標(biāo)系與參數(shù)方程選做題)
          曲線C1(θ為參數(shù))上的點(diǎn)到曲線C2上的點(diǎn)的最短距離為   
          (2)(幾何證明選講選做題)
          如圖,已知:△ABC內(nèi)接于圓O,點(diǎn)D在OC的延長(zhǎng)線上,AD是圓O的切線,若∠B=30°,AC=1,則AD的長(zhǎng)為   

          查看答案和解析>>

          同步練習(xí)冊(cè)答案