日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在梯形ABCD中,AB∥CD,AB=a,CD=b(a>b).若EF∥AB,EF到CD與AB的距離之比為m:n,則可推算出:數(shù)學公式,用類比的方法,推想出下列問題的結(jié)果,在上面的梯形ABCD中,延長梯形的兩腰AD和BC交于O點,設(shè)△OAB,△OCD的面積分別為S1,S2,EF∥AB,,且EF到CD與AB的距離之比為m:n,則△OEF的面積S0與S1,S2的關(guān)系是


          1. A.
            數(shù)學公式
          2. B.
            數(shù)學公式
          3. C.
            數(shù)學公式
          4. D.
            數(shù)學公式
          C
          分析:在平面幾何中的進行幾何性質(zhì)類比推理時,我們常用的思路是:由平面幾何中線段的性質(zhì),類比推理平面幾何中面積的性質(zhì);故由:,類比到S0與S1,S2的關(guān)系是:
          解答:在平面幾何中類比幾何性質(zhì)時,
          一般為:由平面幾何點的性質(zhì),類比推理線的性質(zhì);
          由平面幾何中線段的性質(zhì),類比推理空間幾何中面積的性質(zhì);
          故由:“”,
          類比到關(guān)于△OEF的面積S0與S1,S2的結(jié)論是:

          故選C.
          點評:本題考查的知識點是類比推理,類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質(zhì)去推測另一類事物的性質(zhì),得出一個明確的命題(猜想).
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=a,點M在線段EF上.
          (1)求證:BC⊥平面ACFE;
          (2)當EM為何值時,AM∥平面BDF?證明你的結(jié)論;
          (3)求二面角B-EF-D的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
          (Ⅰ)求證:BC⊥平面ACFE;
          (Ⅱ)點M在線段EF上運動,設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,BD與AC相交于O,過O的直線分別交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,則EF=
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出
          (1)圖中與
          EF
          、
          CO
          共線的向量;
          (2)與
          EA
          相等的向量.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四邊形ACFE為矩形,平面ACFE上平面ABCD,CF=1.
          (I)求證:BC⊥平面ACFE;
          (II)若M為線段EF的中點,設(shè)平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),求cosθ.

          查看答案和解析>>

          同步練習冊答案