已知橢圓C:的離心率與等軸雙曲線的離心率互為倒數(shù),直線
與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切。
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M是橢圓的上頂點,過點M分別作直線MA,MB交橢圓于A,B兩點,設(shè)兩直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過定點(―1,―1)
(Ⅰ);(Ⅱ)詳見解析
【解析】
試題分析:(I)由等軸雙曲線的離心率為,可得橢圓的離心率
,因為直線
,與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切,利用點到直線的距離公式和直線與圓相切的性質(zhì)可得,
,再利用
即可得出;(II)分直線AB的斜率不存在與存在兩種情況討論,①不存在時比較簡單;②斜率存在時,設(shè)直線AB的方程為
,由橢圓
與橢圓的方程聯(lián)立,利用根與系數(shù)的關(guān)系及斜率公式,再利用
即可證明
試題解析:(Ⅰ)由題意得
,
2分
即,解得
4分
故橢圓C的方程為
5分
(Ⅱ)當直線AB的斜率不存在時,設(shè)A,則B
,由k1+k2=2得
,得
7分
當直線AB的斜率存在時,設(shè)AB的方程為y=kx+b(),
,
得,
9分
即
由,
11分
即
故直線AB過定點(―1,―1) 13分
考點:直線與圓錐曲線的關(guān)系;橢圓的標準方程
科目:高中數(shù)學 來源:2009年廣東省廣州市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年重慶市七區(qū)高三第一次調(diào)研測試數(shù)學理卷 題型:選擇題
已知橢圓C:的離心率為
,過右焦點
且斜率為
的直線與橢圓C相交于
、
兩點.若
,則
=( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆廣東省高二第一學期期末考試文科數(shù)學 題型:解答題
(本小題滿分12分)
已知橢圓C:,它的離心率為
.直線
與以原點為圓心,以C的短半軸為半徑的圓O相切. 求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年吉林一中高二下學期第一次月考數(shù)學文卷 題型:解答題
.已知橢圓C:的離心率為
,橢圓C上任意一點到橢圓兩個焦點的距離之和為6.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線:
與橢圓C交于
,
兩點,點
,且
,求直線
的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com