日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,-3),N(5,1),若動(dòng)點(diǎn)C滿足
          NC
          =t
          NM
          且點(diǎn)C的軌跡與拋物線y2=4x交于A,B兩點(diǎn).
          (1)求證:
          OA
          OB
          ;
          (2)在x軸上是否存在一點(diǎn)P(m,0)(m≠0),使得過點(diǎn)P的直線l交拋物線y2=4x于D,E兩點(diǎn),并以線段DE為直徑的圓都過原點(diǎn).若存在,請(qǐng)求出m的值及圓心M的軌跡方程;若不存在,請(qǐng)說明理由.
          (1)由動(dòng)點(diǎn)C滿足
          NC
          =t
          NM
          ,知點(diǎn)C的軌跡是M、N兩點(diǎn)所在的直線,
          又因?yàn)橹本MN的方程為x-y-4=0
          ∴點(diǎn)C的軌跡方程為x-y-4=0
          設(shè)A(x1,y1),B(x2,y2
          x-y-4=0
          y2=4x
          得:
          x2-12x+16=0
          ∴x1•x2=16,x1+x2=12
          又y1•y2=(x1-4)•(x2-4)=-16
          ∴x1•x2+y1•y2=0
          OA
          OB

          (2)假設(shè)存在P(m,0)(m≠0),使得過點(diǎn)P的直線l交拋物線y2=4x 于D,E兩點(diǎn),并以線段DE為直徑的圓都過原點(diǎn),
          由題意知:弦所在的直線的斜率不為零.故設(shè)弦所在的直線方程為:x=ky+m,
          代入 y2=4x 得 y2-4ky-4m=0,設(shè)D(x1,y1),E(x2,y2
          ∴y1+y2=4k,y1y2=-4m.
          若以弦DE為直徑的圓都過原點(diǎn),則OD⊥OE,∴x1x2+y1y2=0.
          y21
          4
          +
          y22
          4
          +y1y2
          =m2-4m,解得m=0 (不合題意,舍去)或 m=4.
          ∴存在點(diǎn)P(4,0),使得過P點(diǎn)任作拋物線的一條弦,以該弦為直徑的圓都過原點(diǎn).
          設(shè)弦D,E的中點(diǎn)為M(x,y) 
          則x=
          1
          2
          (x1+x2),y=
          1
          2
          ( y1+y2)=2k,
          x1+x2=ky1+4+ky2+4=k(y1+y2)+8=4k2+8,
          ∴x=2k2+4,y=2k,
          ∴消去k得弦D,E的中點(diǎn)M的軌跡方程為:y2=2x-8.
          ∴圓心的軌跡方程為y2=2x-8.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為:pcos(θ-
          π3
          )=1
          ,M,N分別為曲線C與x軸,y軸的交點(diǎn),則MN的中點(diǎn)P在平面直角坐標(biāo)系中的坐標(biāo)為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,A(3,0)、B(0,3)、C(cosθ,sinθ),θ∈(
          π
          2
          2
          )
          ,且|
          AC
          |=|
          BC
          |

          (1)求角θ的值;
          (2)設(shè)α>0,0<β<
          π
          2
          ,且α+β=
          2
          3
          θ
          ,求y=2-sin2α-cos2β的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,如果x與y都是整數(shù),就稱點(diǎn)(x,y)為整點(diǎn),下列命題中正確的是
           
          (寫出所有正確命題的編號(hào)).
          ①存在這樣的直線,既不與坐標(biāo)軸平行又不經(jīng)過任何整點(diǎn)
          ②如果k與b都是無理數(shù),則直線y=kx+b不經(jīng)過任何整點(diǎn)
          ③直線l經(jīng)過無窮多個(gè)整點(diǎn),當(dāng)且僅當(dāng)l經(jīng)過兩個(gè)不同的整點(diǎn)
          ④直線y=kx+b經(jīng)過無窮多個(gè)整點(diǎn)的充分必要條件是:k與b都是有理數(shù)
          ⑤存在恰經(jīng)過一個(gè)整點(diǎn)的直線.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,下列函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱的是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,以點(diǎn)(1,0)為圓心,r為半徑作圓,依次與拋物線y2=x交于A、B、C、D四點(diǎn),若AC與BD的交點(diǎn)F恰好為拋物線的焦點(diǎn),則r=
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案