日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)已知函數(shù)f(x)=|x+7|,g(x)=m-|x-2|,若函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,求實數(shù)m的取值范圍.
          (2)已知a>0,b>0,c>0,a+b+c=9,且2|x-1|+|x|≥
          3abc
          對任意的a,b,c恒成立,求實數(shù)x的取值范圍.
          分析:(1)函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,等價于|x+7|>m-|x-2|,分離參數(shù)m<|x-2|+|x+7|,求右邊的最值,即可求實數(shù)m的取值范圍.
          (2)利用
          3abc
          a+b+c
          3
          =3(當且僅當a=b=c=3時取等號),2|x-1|+|x|≥
          3abc
          對任意的a,b,c恒成立,等價于2|x-1|+|x|≥3恒成立,分類討論,即可求實數(shù)x的取值范圍.
          解答:解:(1)∵函數(shù)f(x)的圖象恒在函數(shù)g(x)圖象的上方,
          ∴|x+7|>m-|x-2|
          ∴m<|x-2|+|x+7|
          由絕對值不等式的性質(zhì)可知|x-2|+|x+7|≥|(x-2)-(x+7)|=9
          ∴m<9;
          (2)∵a>0,b>0
          3abc
          a+b+c
          3
          =3(當且僅當a=b=c=3時取等號)
          2|x-1|+|x|≥
          3abc
          對任意的a,b,c恒成立,等價于2|x-1|+|x|≥3恒成立,
          x≤0
          -2x+2-x≥3
          0<x≤1
          -2x+2+x≥3
          x>1
          2x-2+x≥3

          ∴x≤-
          1
          3
          或x≥
          5
          3
          點評:本題考查恒成立問題,考查求最值,考查學生分析解決問題的能力,考查學生的計算能力,屬于中檔題.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          (1)已知函數(shù)f(x)=-x2+4(x∈(-1,2)),P、Q是f(x)圖象上的任意兩點.
          ①試求直線PQ的斜率kPQ的取值范圍;
          ②求f(x)圖象上任一點切線的斜率k的范圍;
          (2)由(1)你能得出什么結(jié)論?(只須寫出結(jié)論,不必證明),試運用這個結(jié)論解答下面的問題:已知集合MD是滿足下列性質(zhì)函數(shù)f(x)的全體:若函數(shù)f(x)的定義域為D,對任意的x1,x2∈D,(x1≠x2)有|f(x1)-f(x2)|<|x1-x2|.
          ①當D=(0,1)時,f(x)=lnx是否屬于MD,若屬于MD,給予證明,否則說明理由;
          ②當D=(0,
          3
          3
          )
          ,函數(shù)f(x)=x3+ax+b時,若f(x)∈MD,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知函數(shù)f(x)=lg(1+x)+lg(1-x).①求函數(shù)f(x)的定義域.②判斷函數(shù)的奇偶性,并給予證明.
          (2)已知函數(shù)f(x)=ax+3,(a>0且a≠1),求函數(shù)f(x)在[0,2]上的值域.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (1)已知函數(shù)f(x)=
          x+3(x≤0)
          2x(x>0)
          ,則f(f(-2))為
          2
          2
          ;
          (2)不等式f(x)>2的解集是
          (-1,0]∪(1,+∞)
          (-1,0]∪(1,+∞)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2006•浦東新區(qū)模擬)(1)已知函數(shù)f(x)=ax-x(a>1).
          ①若f(3)<0,試求a的取值范圍;
          ②寫出一組數(shù)a,x0(x0≠3,保留4位有效數(shù)字),使得f(x0)<0成立;
          (2)若曲線y=x+
          p
          x
          (p≠0)上存在兩個不同點關(guān)于直線y=x對稱,求實數(shù)p的取值范圍;
          (3)當0<a<1時,就函數(shù)y=ax與y=logax的圖象的交點情況提出你的問題,并加以解決.(說明:①函數(shù)f(x)=xlnx有如下性質(zhì):在區(qū)間(0,
          1
          e
          ]
          上單調(diào)遞減,在區(qū)間[
          1
          e
          ,1)
          上單調(diào)遞增.解題過程中可以利用;②將根據(jù)提出和解決問題的不同層次區(qū)別給分.)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          給出下列四個命題:
          (1)已知函數(shù)f(x)=
          1
          2
          x2   x≤2
          log2(x+a)  x>2
          在定義域內(nèi)是連續(xù)函數(shù),數(shù)列{an}通項公式為an=
          1
          an
          ,則數(shù)列{an}的所有項之和為1.
          (2)過點P(3,3)與曲線(x-2)2-
          (y-1)2
          4
          =1有唯一公共點的直線有且只有兩條.
          (3)向量
          a
          =(x2,x+1)
          b
          =(1-x,t)
          ,若函數(shù)f(x)=
          a
          b
          在區(qū)間[-1,1]上是增函數(shù),則實數(shù)t的取值范圍是(5,+∞);
          (4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個.
          其中正確的命題有
          (1)(2)(4)
          (1)(2)(4)
          (填序號)

          查看答案和解析>>

          同步練習冊答案