日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,角A,B,C所對(duì)的邊長(zhǎng)分別是a,b,c.

          (1)若sin C + sin(B-A)= sin 2A,試判斷△ABC的形狀;

          (2)若△ABC的面積S = 3,且c =,C =,求a,b的值.

           

          【答案】

          (1)△ABC為直角三角形或等腰三角形(2)

          【解析】本試題主要是考查了解三角形的運(yùn)用。

          (1)根據(jù)三角形內(nèi)角和定理,得到sinC=sin(A+B),代入已知等式,展開化簡(jiǎn)合并,得sinBcosA=sinAcosA,最后討論當(dāng)cosA=0時(shí)與當(dāng)cosA≠0時(shí),分別對(duì)△ABC的形狀的形狀加以判斷,可以得到結(jié)論

          (2)結(jié)合三角形的面積公式和余弦定理得到結(jié)論。

          解(1)由題意得 sin(B + A)+ sin(B-A)= sin 2A,

          sin B cos A = sin A cos A,即 cos A(sin B-sin A)= 0,

          cosA = 0  或 sin B = sin A.                           …… 3分

          因A,B為三角形中的角,于是或B = A.

          所以△ABC為直角三角形或等腰三角形.                   …… 5分

          (2)因?yàn)椤鰽BC的面積等于 3,所以 ,得 ab = 12.

          由余弦定理及已知條件,得 a2 + b2-ab = 13.

          聯(lián)立方程組 解得       …………… 10分

           

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,若b2+c2-a2=
          3
          bc
          ,且b=
          3
          a
          ,則下列關(guān)系一定不成立的是(  )
          A、a=c
          B、b=c
          C、2a=c
          D、a2+b2=c2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知B=60°,cos(B+C)=-
          1114

          (1)求cosC的值;
          (2)若bcosC+acosB=5,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且bsinA=
          3
          acosB

          (1)求角B的大;
          (2)若a=4,c=3,D為BC的中點(diǎn),求△ABC的面積及AD的長(zhǎng)度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c并且滿足
          b
          a
          =
          sinB
          cosA

          (1)求∠A的值;
          (2)求用角B表示
          2
          sinB-cosC
          ,并求它的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在△ABC中,角A,B,C所對(duì)邊的長(zhǎng)分別為a,b,c,且a=
          5
          ,b=3,sinC=2sinA
          ,則sinA=
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案