橢圓:
的右焦點
與拋物線
的焦點重合,過
作與
軸垂直的直線
與橢圓交于
兩點,與拋物線交于
兩點,且
。
(1)求橢圓的方程;
(2)若過點的直線與橢圓
相交于兩點
,設
為橢圓
上一點,且滿足
為坐標原點),當
時,求實數(shù)
的取值范圍。
科目:高中數(shù)學 來源: 題型:解答題
(本小題共14分)
已知橢圓C:,左焦點
,且離心率
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線與橢圓C交于不同的兩點
(
不是左、右頂點),且以
為直徑的圓經過橢圓C的右頂點A. 求證:直線
過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知橢圓:
(
)的離心率為
,過右焦點
且斜率為1的直線交橢圓
于
兩點,
為弦
的中點。
(1)求直線(
為坐標原點)的斜率
;
(2)設橢圓
上任意一點,且
,求
的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分,(Ⅰ)小問3分,(Ⅱ)小問9分.)
直線稱為橢圓
的“特征直線”,若橢圓的離心率
.(1)求橢圓的“特征直線”方程;
(2)過橢圓C上一點作圓
的切線,切點為P、Q,直線PQ與橢圓的“特征直線”相交于點E、F,O為坐標原點,若
取值范圍恰為
,求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓(
)過點
(0,2),離心率
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設過定點(2,0)的直線
與橢圓相交于
兩點,且
為銳角(其中
為坐標原點),求直線
斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
在平面直角坐標系中,已知三點
,
,
,曲線C上任意—點
滿足:
.
(l)求曲線C的方程;
(2)設點P是曲線C上的任意一點,過原點的直線L與曲線相交于M,N兩點,若直線PM,PN的斜率都存在,并記為,
.試探究
的值是否與點P及直線L有關,并證明你的結論;
(3)設曲線C與y軸交于D、E兩點,點M (0,m)在線段DE上,點P在曲線C上運動.若當點P的坐標為(0,2)時,取得最小值,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分13分)
已知點,
,△
的周長為6.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)設過點的直線
與曲線
相交于不同的兩點
,
.若點
在
軸上,且
,求點
的縱坐標的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com