日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知集合M={1,2,3,…,n}(n∈N*),若集合A={a1,a2a3,…,am}(m∈N*),且對任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),則稱集合A為集合M的一個m元基底.
          (Ⅰ)分別判斷下列集合A是否為集合M的一個二元基底,并說明理由;
          ①A={1,5}M={1,2,3,4,5};
          ②A={2,3},M={1,2,3,4,5,6}.
          (Ⅱ)若集合A是集合M的一個m元基底,證明:m(m+1)≥n;
          (Ⅲ)若集合A為集合M={1,2,3,…,19}的一個m元基底,求出m的最小可能值,并寫出當m取最小值時M的一個基底A.
          分析:(I)利用二元基底的定義加以驗證,可得A={1,5}不是M={1,2,3,4,5}的一個二元基底,A={2,3}是M={1,2,3,4,5}的一個二元基底.
          (II)設a1<a2<a3<…<am,計算出b=λ1ai2aj的各種情況下的正整數(shù)個數(shù)并求出它們的和,結合題意得m+m+Cm2+Cm2≥n,即m(m+1)≥n.
          (III)由(Ⅱ)可知m(m+1)≥19,所以m≥4,并且得到結論“基底中元素表示出的數(shù)最多重復一個”.再討論當m=4時,集合A的所有情況均不可能是M的4元基底,而當m=5時,M的一個基底A={1,3,5,9,16},由此可得m的最小可能值為5.
          解答:解:(Ⅰ)①A={1,5}不是M={1,2,3,4,5}的一個二元基底.理由是3≠λ1×1+λ2×5;
          ②A={2,3}是M={1,2,3,4,5}的一個二元基底.理由是
          1=-1×2+1×3,2=1×2+0×3,3=0×2+1×3,4=1×2+1×2,5=1×2+1×3,6=1×3+1×3.           …3分
          (Ⅱ)不妨設a1<a2<a3<…<am,則
          形如1×ai+0×aj(1≤i≤j≤m)的正整數(shù)共有m個;
          形如1×ai+1×ai(1≤i≤m)的正整數(shù)共有m個;
          形如1×ai+1×aj(1≤i≤j≤m)的正整數(shù)至多有Cm2個;
          形如-1×ai+1×aj(1≤i≤j≤m)的正整數(shù)至多有Cm2個.
          又集合M={1,2,3,…,n}(n∈N*),含n個不同的正整數(shù),A為集合M的一個m元基底.
          故m+m+Cm2+Cm2≥n,即m(m+1)≥n.…8分
          (Ⅲ)由(Ⅱ)可知m(m+1)≥19,所以m≥4.
          當m=4時,m(m+1)-19=1,即用基底中元素表示出的數(shù)最多重復一個.…*
          假設A=a1,a2,a3,,a4為M={1,2,3,…,19}的一個4元基底,
          不妨設a1<a2<a3<a4,則a4≥10.
          當a4=10時,有a3=9,這時a2=8或7.
          如果a2=8,則由1=10-9,1=9-8,18=9+9,18=10+8,這與結論*矛盾.
          如果a2=7,則a1=6或5.易知A={6,7,9,10}和A={5,7,9,10}都不是M={1,2,3,…,19}的4元基底,矛盾.
          當a4=11時,有a3=8,這時a2=7,a1=6,易知A={6,7,8,11}不是M={1,2,3,…,19}的4元基底,矛盾.
          當a4=12時,有a3=7,這時a2=6,a1=5,易知A={5,6,7,12}不是M={1,2,3,…,19}的4元基底,矛盾.
          當a4=13時,有a3=6,a2=5,a1=4,易知A={4,5,6,13}不是M={1,2,3,…,19}的4元基底,矛盾.
          當a4=14時,有a3=5,a2=4,a1=3,易知A={3,4,5,14}不是M={1,2,3,…,19}的4元基底,矛盾.
          當a4=15時,有a3=4,a2=3,a1=2,易知A={2,3,4,15}不是M={1,2,3,…,19}的4元基底,矛盾.
          當a4=16時,有a3=3,a2=2,a1=1,易知A={1,2,3,16}不是M={1,2,3,…,19}的4元基底,矛盾.
          當a4≥17時,A均不可能是M的4元基底.
          當m=5時,M的一個基底A={1,3,5,9,16}.
          綜上所述,m的最小可能值為5.…14分
          點評:本題以一個集合為另一個集合的m元基底的討論為載體,著重考查了集合元素的討論和方程、不等式的整數(shù)解的討論和兩個計數(shù)原理等知識,屬于難題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          1、已知集合M={1,2,3,4,5,6},N={x|-2<x<5,x∈Z},則集合M∩N=
          {1,2,3,4}

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          1、已知集合M={1,2,3,4},集合N={3,4,5,6},則( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          1、已知集合M={1,2,3},N={0,1,2},則M∩N等于(  )

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知集合M={1,2,3,4},N={2,3,4},則( 。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          已知集合M={1,2},N={2a-1|a∈M},則M∩N=( 。

          查看答案和解析>>

          同步練習冊答案