【題目】已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn)
,且它的離心率
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)與圓相切的直線
交橢圓于
、
兩點(diǎn),若橢圓上一點(diǎn)
滿足
,求實(shí)數(shù)
的取值范圍
【答案】(1);(2)
【解析】
(1)根據(jù)題意先設(shè)出橢圓的標(biāo)準(zhǔn)方程,然后根據(jù)橢圓上的點(diǎn)及離心率可求出方程中的待定系數(shù),進(jìn)而可得所求的方程;(2)由直線和圓相切可得(t≠0),然后將直線方程代入橢圓方程后得到關(guān)于x的一元二次方程,根據(jù)根據(jù)系數(shù)的關(guān)系可得點(diǎn)C的坐標(biāo),代入橢圓方程后整理得到
,根據(jù)
的范圍可得
,進(jìn)而得到所求范圍.
(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為,
由已知得解得
所以橢圓的標(biāo)準(zhǔn)方程為.
(2)因?yàn)橹本:y=kx+t與圓(x-1)2+y2=1相切,
所以=1,
整理得(t≠0).
由消去y整理得(3+4k2)x2+8ktx+4t2-24=0,
因?yàn)橹本與橢圓交于M,N兩點(diǎn),
所以,
將代入上式可得
恒成立.
設(shè)M(x1,y1),N(x2,y2),
則有x1+x2=-,
所以y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=,
因?yàn)?/span>
),
所以可得C,
又因?yàn)辄c(diǎn)C在橢圓上,
所以+
=1,
所以,
因?yàn)閠2>0,所以+
+1>1,
所以,
所以的取值范圍為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱中,四邊形
四邊均相等,點(diǎn)
在面
的射影為
中點(diǎn)
.
(1)證明:;
(2)若,
,
,求
點(diǎn)到面
的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:ρsin=4和圓C:ρ=2kcos
(k≠0),若直線l上的點(diǎn)到圓C上的點(diǎn)的最小距離等于2.求實(shí)數(shù)k的值并求圓心C的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinωx﹣cosωx+m(ω>0,x∈R,m是常數(shù))的圖象上的一個(gè)最高點(diǎn)
,且與點(diǎn)
最近的一個(gè)最低點(diǎn)是
.
(1)求函數(shù)f(x)的解析式及其單調(diào)遞增區(qū)間;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且 ac,求函數(shù)f(A)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠擬生產(chǎn)甲、乙兩種適銷產(chǎn)品,每件銷售收入分別為3000元,2000元.甲、乙產(chǎn)品都需要在A、B兩種設(shè)備上加工,在每臺(tái)A、B設(shè)備上加工一件甲所需工時(shí)分別為1,2
,加工一件乙設(shè)備所需工時(shí)分別為2
,1
.A、B兩種設(shè)備每月有效使用臺(tái)時(shí)數(shù)分別為400
和500
,分別用
表示計(jì)劃每月生產(chǎn)甲,乙產(chǎn)品的件數(shù).
(Ⅰ)用列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問分別生產(chǎn)甲、乙兩種產(chǎn)品各多少件,可使收入最大?并求出最大收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用[x]表示不超過x的最大整數(shù),例如[3]=3,[1.2]=1,[﹣1.3]=﹣2.已知數(shù)列{an}滿足a1=1,an+1=an2+an , 則[ +
+…+
]= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓C:過點(diǎn)
,離心率為
.
(1)求橢圓C的方程;
(2)設(shè)斜率為1的直線過橢圓C的左焦點(diǎn)且與橢圓C相交于A,B兩點(diǎn),求AB的中點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與
軸的非負(fù)半軸重合,且長(zhǎng)度單位相同,直線
的極坐標(biāo)方程為
,曲線
(
為參數(shù)).其中
.
(1)試寫出直線的直角坐標(biāo)方程及曲線
的普通方程;
(2)若點(diǎn)為曲線
上的動(dòng)點(diǎn),求點(diǎn)
到直線
距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個(gè)命題:
(1)“若,則
,
互為倒數(shù)”的逆命題;
(2)“面積相等的三角形全等”的否命題;
(3)“若,則
有實(shí)數(shù)解”的逆否命題;
(4)“若,則
”的逆否命題.
其中真命題為( )
A. (1)(2) B. (2)(3) C. (4) D. (1)(2)(3)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com