日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)二次函數(shù)f(x)=ax2+bx+c(a、bc∈R),且f(1) =-,a>2cb.

          (1)判斷a、b的符號(hào);

          (2)證明f(x)=0至少有一實(shí)根在區(qū)間(0,2)內(nèi);

          (3)求函數(shù)y=f(x)圖象被x軸所截弦長的范圍.

          (1)解析:∵f(1)=- ,?

          ∴3a+2b+2c=0.①?

          又∵a>2c>b,∴3a+2b+2c<3a+2a+a=6a,3a+2b+2c>3b+2b+b=6b,?

          結(jié)合①得a>0且b<0.?

          (2)證明:由①得b=- a-c,?

          f(0)=c,f(2)=4a+2b+c=a-c.?

          1°當(dāng)c≤0時(shí),∵a>0,?

          f(1)=-<0且f(2)=a-c>0.?

          f(x)=0在區(qū)間(1,2)內(nèi)至少有一個(gè)實(shí)數(shù)根.?

          2°當(dāng)c>0時(shí),∵a>0,∴f(0)=c>0且f(1)=- <0.?

          f(x)=0在區(qū)間(0,1)內(nèi)至少有一個(gè)實(shí)數(shù)根.?

          綜合1°和2°,得f(x)=0在(0,2)內(nèi)至少有一個(gè)實(shí)數(shù)根.?

          (3)解析:由①得2c=-3a-2b,?

          a>2c>b,?

          a>-3a-2b>b.?

          a>0,∴1>-3-2·.?

          ∴-2<<-1.②?

          設(shè)方程f(x)=0的兩根為x1x2,?

          x1+x2=-,③?

          x1x2= =- -,④?

          由②得 <|x1-x2|<,

          即函數(shù)y=f(x)的圖象被x軸截得的弦長的取值范圍是(, ).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)二次函數(shù)f(x)=x2+x+c(c>
          1
          8
          )
          的圖象與x軸的左右兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,則x2-x1的取值范圍為( 。
          A、(0,1)
          B、(0,
          2
          2
          )
          C、(
          1
          2
          ,
          2
          2
          )
          D、(
          2
          2
          ,1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)二次函數(shù)f(x)=(k-4)x2+kx
           &(k∈R)
          ,對(duì)任意實(shí)數(shù)x,有f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
          (1)求函數(shù)f(x)的解析式和值域;
          (2)試寫出一個(gè)區(qū)間(a,b),使得當(dāng)a1∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說明理由;
          (3)已知,是否存在非零整數(shù)λ,使得對(duì)任意n∈N*,都有log3(
          1
          1
          2
          -a1
          )+log3(
          1
          1
          2
          -a2
          )+…+log3(
          1
          1
          2
          -an
          )>(-1)n-12λ+nlog32-1
          -1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2014•長寧區(qū)一模)設(shè)二次函數(shù)f(x)=(k-4)x2+kx
           (k∈R)
          ,對(duì)任意實(shí)數(shù)x,有f(x)≤6x+2恒成立;數(shù)列{an}滿足an+1=f(an).
          (1)求函數(shù)f(x)的解析式和值域;
          (2)證明:當(dāng)an∈(0,
          1
          2
          )
          時(shí),數(shù)列{an}在該區(qū)間上是遞增數(shù)列;
          (3)已知a1=
          1
          3
          ,是否存在非零整數(shù)λ,使得對(duì)任意n∈N*,都有log3(
          1
          1
          2
          -a1
          )+log3(
          1
          1
          2
          -a2
          )+…+log3(
          1
          1
          2
          -an
          )>-
          1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)二次函數(shù)f(x)=(k-4)x2+kx
           &(k∈R)
          ,對(duì)任意實(shí)數(shù)x,f(x)≤6x+2恒成立;正數(shù)數(shù)列{an}滿足an+1=f(an).
          (1)求函數(shù)f(x)的解析式和值域;
          (2)試寫出一個(gè)區(qū)間(a,b),使得當(dāng)an∈(a,b)時(shí),數(shù)列{an}在這個(gè)區(qū)間上是遞增數(shù)列,并說明理由;
          (3)若已知,求證:數(shù)列{lg(
          1
          2
          -an)+lg2}
          是等比數(shù)列.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)二次函數(shù)f(x)=x2x+a(a>0),若f(m)<0,則f(m-1)的值為(    )

          A.正數(shù)          B.負(fù)數(shù)     C.非負(fù)數(shù)              D.正數(shù)、負(fù)數(shù)和零都有可能

          查看答案和解析>>

          同步練習(xí)冊(cè)答案