日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=()x,x∈[-1,1],函數(shù)g(x)=f2(x)-2af(x)+3的最小值為h(a)。
          (1)求h(a);
          (2)是否存在實(shí)數(shù)m,n,同時(shí)滿足以下條件:①m>n>3;②當(dāng)h(a)的定義域?yàn)閇n,m]時(shí),值域?yàn)閇n2,m2]。若存在,求出m,n的值;若不存在,說明理由.
          解:(1)因?yàn)閤∈[-1,1],所以,
          設(shè),
          則g(x)=φ(t)=t2-2at+3=(t-a)2+3-a2
          當(dāng)a<時(shí),
          當(dāng)≤a≤3時(shí),h(a)=φ(a)=3-a2;
          當(dāng)a>3時(shí),h(a)=φ(3)=12-6a;
          所以,。
          (2)因?yàn)閙>n>3,a∈[n,m],所以h(a)=12-6a,
          因?yàn)閔(a)的定義域?yàn)閇n,m],值域?yàn)閇n2,m2],且h(a)為減函數(shù),
          所以,兩式相減得6(m-n)=(m-n)(m+n),
          因?yàn)閙>n,所以m-n≠0,得m+n=6,
          但這與“m>n>3”矛盾,故滿足條件的實(shí)數(shù)m,n不存在。
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3x+5,(x≤0)
          x+5,(0<x≤1)
          -2x+8,(x>1)
          ,
          求(1)f(
          1
          π
          ),f[f(-1)]
          的值;
          (2)若f(a)>2,則a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=
          (1-3a)x+10ax≤7
          ax-7x>7.
          是定義域上的遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
          A、(
          1
          3
          ,1)
          B、(
          1
          3
          1
          2
          ]
          C、(
          1
          3
          6
          11
          ]
          D、[
          6
          11
          ,1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          |x-1|-a
          1-x2
          是奇函數(shù).則實(shí)數(shù)a的值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          2x-2-x2x+2-x

          (1)求f(x)的定義域與值域;
          (2)判斷f(x)的奇偶性并證明;
          (3)研究f(x)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          x-1x+a
          +ln(x+1)
          ,其中實(shí)數(shù)a≠1.
          (1)若a=2,求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
          (2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案