日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F(xiàn)分別為PC,CD的中點(diǎn),DE=EC.

          (1)求證:平面ABE⊥平面BEF;
          (2)設(shè)PA=a,若平面EBD與平面ABCD所成銳二面角 ,求a的取值范圍.

          【答案】
          (1)證明:如圖,

          ∵AB∥CD,CD⊥AD,AD=CD=2AB=2,F(xiàn)為CD的中點(diǎn),

          ∴ABFD為矩形,AB⊥BF.

          ∵DE=EC,∴DC⊥EF,又AB∥CD,∴AB⊥EF

          ∵BF∩EF=F,∴AB⊥面BEF,又AE面ABE,

          ∴平面ABE⊥平面BEF


          (2)解:∵DE=EC,∴DC⊥EF,又PD∥EF,AB∥CD,∴AB⊥PD

          又AB⊥PD,所以AB⊥面PAD,AB⊥PA.

          以AB所在直線為x軸,AD所在直線為y軸,AP所在直線為z軸建立空間坐標(biāo)系,

          則B(1,0,0),D(0,2,0),P(0,0,a),C(2,2,0),E(1,1,

          平面BCD的法向量

          設(shè)平面EBD的法向量為 ,

          ,即 ,取y=1,得x=2,z=

          所以

          因?yàn)槠矫鍱BD與平面ABCD所成銳二面角 ,

          所以cosθ∈ ,即

          得:

          得:

          所以a的取值范圍是


          【解析】(1)由題目給出的條件,可得四邊形ABFD為矩形,說明AB⊥BF,再證明AB⊥EF,由線面垂直的判定可得AB⊥面BEF,再根據(jù)面面垂直的判定得到平面ABE⊥平面BEF;(2)以A點(diǎn)為坐標(biāo)原點(diǎn),AB、AD、AP所在直線分別為x、y、z軸建立空間坐標(biāo)系,利用平面法向量所成交與二面角的關(guān)系求出二面角的余弦值,根據(jù)給出的二面角的范圍得其余弦值的范圍,最后求解不等式可得a的取值范圍.
          【考點(diǎn)精析】關(guān)于本題考查的平面與平面垂直的判定,需要了解一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直才能得出正確答案.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】(1)求不等式的解集.

          (2)已知.若對(duì)于任意的,不等式恒成立,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知四棱錐,底面是菱形,平面,點(diǎn)中點(diǎn),點(diǎn)中點(diǎn).

          (1) 證明:平面平面;

          (2) 求二面角的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x+sin2x.給出以下四個(gè)命題:
          x>0,不等式f(x)<2x恒成立;
          k∈R,使方程f(x)=k有四個(gè)不相等的實(shí)數(shù)根;
          ③函數(shù)f(x)的圖象存在無數(shù)個(gè)對(duì)稱中心;
          ④若數(shù)列{an}為等差數(shù)列,且f(al)+f(a2)+f(a3)=3π,則a2=π.
          其中的正確命題有 . (寫出所有正確命題的序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

          (1)證明:平面PAB⊥平面PAD;

          (2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)平面中,的兩個(gè)頂點(diǎn)為,平面內(nèi)兩點(diǎn)、同時(shí)滿足:++=;②||=||=||;③

          1)求頂點(diǎn)的軌跡的方程;

          (2)過點(diǎn)作兩條互相垂直的直線,直線與點(diǎn)的軌跡相交弦分別為,設(shè)弦的中點(diǎn)分別為.求四邊形的面積的最小值;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中,A,B,C所對(duì)的邊分別為a,b,c,已知sinC=
          (1)若a+b=5,求△ABC面積的最大值;
          (2)若a=2,2sin2A+sinAsinC=sin2C,求b及c的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線:x+y﹣1=0,

          (1)若直線過點(diǎn)(3,2)且∥,求直線的方程;

          (2)若直線與直線2x﹣y+7=0的交點(diǎn),且,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的圖象的相鄰兩對(duì)稱中心的距離為π,且f(x+ )=f(﹣x),則函數(shù)y=f( ﹣x)是(
          A.偶函數(shù)且在x=0處取得最大值
          B.偶函數(shù)且在x=0處取得最小值
          C.奇函數(shù)且在x=0處取得最大值
          D.奇函數(shù)且在x=0處取得最小值

          查看答案和解析>>

          同步練習(xí)冊(cè)答案