日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2an﹣2;數(shù)列{bn}的前n項(xiàng)和為Tn , 且滿足b1=1,b2=2,
          (1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
          (2)是否存在正整數(shù)n,使得 恰為數(shù)列{bn}中的一項(xiàng)?若存在,求所有滿足要求的bn;若不存在,說明理由.

          【答案】
          (1)解:由Sn=2an﹣2,則當(dāng)n≥2時(shí),Sn﹣1=2an﹣1﹣2,

          兩式相減得:an=2an﹣2an﹣1,則an=2an﹣1,

          由S1=2a1﹣2,則a1=2,

          ∴數(shù)列{an}是以2為首項(xiàng),2為公比的等比數(shù)列,則an=2n,

          = , = , = ,, = =

          以上各式相乘, = ,則2Tn=bnbn+1,

          當(dāng)n≥2時(shí),2Tn﹣1=bn﹣1bn,兩式相減得:2bn=bn(bn+1﹣bn﹣1),即bn+1﹣bn﹣1=2,

          ∴數(shù)列{bn}的奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別成等差數(shù)列,

          = ,則b3=T2=b1+b2=3,b1+b3=2b2,

          ∴數(shù)列{bn}是以b1=1為首項(xiàng),1為公差的等差數(shù)列,

          ∴數(shù)列{bn}的通項(xiàng)公式bn=n;


          (2)當(dāng)n=1時(shí), 無意義,

          設(shè)cn= = ,(n≥2,n∈N*),

          則cn+1﹣cn= = <0,

          即cn>cn+1>1,

          顯然2n+n+1>2n﹣(n+1),則c2=7>c3=3>c4>>1,

          ∴存在n=2,使得b7=c2,b3=c3

          下面證明不存在c2=2,否則,cn= =2,即2n=3(n+1),

          此時(shí)右邊為3的倍數(shù),而2n不可能是3的倍數(shù),故該不等式成立,

          綜上,滿足要求的bn為b3,b7


          【解析】(1)當(dāng)n≥2時(shí),Sn=2an﹣2,Sn﹣1=2an﹣1﹣2,由an=Sn-Sn-1可得an=2an﹣2an﹣1,則數(shù)列{an}是以2為首項(xiàng),2為公比的等比數(shù)列,則an=2n=,使用累乘法可得到2Tn=bnbn+1,由bn=Tn-Tn-1可得bn+1﹣bn﹣1=2,數(shù)列{bn}的奇數(shù)項(xiàng),偶數(shù)項(xiàng)分別成等差數(shù)列,數(shù)列{bn}的通項(xiàng)公式bn=n,(2)設(shè)cn= ,作差比較大小,cn>cn+1>1,根據(jù)數(shù)列的單調(diào)性,即可求得存在存在n=2,使得b7=c2,b3=c3.
          【考點(diǎn)精析】本題主要考查了數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式的相關(guān)知識(shí)點(diǎn),需要掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能正確解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=AA1=4,AB=3,AB⊥AC.

          (Ⅰ)求證:A1C⊥平面ABC1;
          (Ⅱ)求二面角A﹣BC1﹣A1的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓 的左、右焦點(diǎn)分別為 ,橢圓 過點(diǎn) ,直線 軸于 ,且 , 為坐標(biāo)原點(diǎn).
          (1)求橢圓 的方程;
          (2)設(shè) 是橢圓 的上頂點(diǎn),過點(diǎn) 分別作直線 交橢圓 兩點(diǎn),設(shè)這兩條直線的斜率分別為 ,且 ,證明:直線 過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】利民中學(xué)為了了解該校高一年級(jí)學(xué)生的數(shù)學(xué)成績(jī),從高一年級(jí)期中考試成績(jī)中抽出100名學(xué)生的成績(jī),由成績(jī)得到如下的頻率分布直方圖.

          根據(jù)以上頻率分布直方圖,回答下列問題:

          (1)求這100名學(xué)生成績(jī)的及格率;(大于等于60分為及格)

          (2)試比較這100名學(xué)生的平均成績(jī)和中位數(shù)的大小.(精確到0.1)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)滿足

          (1)求證,并求的取值范圍;

          (2)證明函數(shù)內(nèi)至少有一個(gè)零點(diǎn);

          (3)設(shè)是函數(shù)的兩個(gè)零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】己知直線l1:4x﹣3y+6=0和直線l2:x=﹣1,拋物線y2=4x上一動(dòng)點(diǎn)P到直線l1和直線l2的距離之和的最小值是( )
          A.2
          B.3
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知線段的端點(diǎn)的坐標(biāo)是端點(diǎn)在圓上運(yùn)動(dòng).

          求線段的中點(diǎn)的軌跡的方程;

          設(shè)圓與曲線的兩交點(diǎn)為求線段的長(zhǎng);

          )若點(diǎn)在曲線上運(yùn)動(dòng)點(diǎn)軸上運(yùn)動(dòng),的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓C的圓心在直線3x﹣y=0上且在第一象限,圓C與x相切,且被直線x﹣y=0截得的弦長(zhǎng)為2
          (1)求圓C的方程;
          (2)若P(x,y)是圓C上的點(diǎn),滿足 x+y﹣m≤0恒成立,求m的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知f(x)=ax+ ,g(x)=ex﹣3ax,a>0,若對(duì)x1∈(0,1),存在x2∈(1,+∞),使得方程f(x1)=g(x2)總有解,則實(shí)數(shù)a的取值范圍為

          查看答案和解析>>

          同步練習(xí)冊(cè)答案