日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網(wǎng)已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
          3
          2
          ,且經(jīng)過點(diǎn)M(4,1).直線l:y=x+m交橢圓于A,B兩不同的點(diǎn).
          (Ⅰ)求橢圓的方程;
          (Ⅱ)若直線l不過點(diǎn)M,求證:直線MA,MB與x軸圍成等腰三角形.
          分析:(Ⅰ)設(shè)出橢圓方程的標(biāo)準(zhǔn)形式,由離心率的值及橢圓過點(diǎn)(4,1)求出待定系數(shù),得到橢圓的標(biāo)準(zhǔn)方程.
          (Ⅱ)把直線方程代入橢圓的方程,由判別式大于0,求出m的范圍,可得到兩根之和、兩根之積,設(shè)直線MA,MB斜率分別為k1和k2,化簡(jiǎn)k1+k2 的結(jié)果等于0,即說明MB與x軸所圍的三角形為等腰三角形.
          解答:解:(1)設(shè)橢圓方程為
          x2
          a2
          +
          y2
          b2
          =1
          ,因?yàn)?span dealflag="1" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">e=
          3
          2
          ,所以a2=4b2,又橢圓過點(diǎn)M(4,1),所以
          16
          a2
          +
          1
          b2
          =1
          ,解得b2=5,a2=20,故橢圓方程為
          x2
          20
          +
          y2
          5
          =1
          (5分)
          (2)將y=x+m代入
          x2
          20
          +
          y2
          5
          =1并整理得5x2+8mx+4m2-20=0,△=(8m)2-20(4m2-20)>0得:5>m>-5.
          設(shè)直線MA,MB斜率分別為k1和k2,只要證k1+k2=0,
          設(shè)A(x1,y1),B(x2,y2),則x1+x2 =-
          8m
          5
          x1x2=
          4m-20
          5

          k1+k2=
          y1-1
          x1-4
          +
          y2-1
          x2-4
          =
          (y1-1)(x2-4)+(y2-1)(x1-4)
          (x1-4)(x2-4)

          分子=(x1+m-1)(x2-4)+(x2+m-1)(x1-4)
          =2x1x2+(m-5)(x1+x2)-8(m-1)
          2(4m2-20)
          5
          -
          8m(m-5)
          5
          -8(m-1)=0

          因此MA,MB與x軸所圍的三角形為等腰三角形.(14分)
          點(diǎn)評(píng):本題考查用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程,一元二次方程根與系數(shù)的關(guān)系,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的中心在原點(diǎn),焦點(diǎn)在x軸上,離心率為
          2
          2
          ,且橢圓經(jīng)過圓C:x2+y2-4x+2
          2
          y=0的圓心C.
          (1)求橢圓的方程;
          (2)設(shè)直線l過橢圓的焦點(diǎn)且與圓C相切,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的中心在原點(diǎn)O,焦點(diǎn)在坐標(biāo)軸上,直線y=2x+1與該橢圓相交于P和Q,且OP⊥OQ,|PQ|=
          1011
          ,求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸,左焦點(diǎn)為F1(-3,0),右準(zhǔn)線方程為x=
          253

          (1)求橢圓的標(biāo)準(zhǔn)方程和離心率e;
          (2)設(shè)P為橢圓上第一象限的點(diǎn),F(xiàn)2為右焦點(diǎn),若△PF1F2為直角三角形,求△PF1F2的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的中心在原點(diǎn),且橢圓過點(diǎn)P(3,2),焦點(diǎn)在坐標(biāo)軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的3倍,求橢圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的中心在原點(diǎn),一個(gè)焦點(diǎn)F1(0,-2
          2
          ),且離心率e滿足:
          2
          3
          ,e,
          4
          3
          成等比數(shù)列.
          (1)求橢圓方程;
          (2)直線y=x+1與橢圓交于點(diǎn)A,B.求△AOB的面積.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案