日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知定義在R上的函數(shù)滿足:(1);(2);(3)時(shí),.大小關(guān)系

          A. B.

          C. D.

          【答案】C

          【解析】

          根據(jù)已知可得函數(shù) fx)的圖象關(guān)于直線x=1對(duì)稱,周期為4,且在[1,3]上為減函數(shù),進(jìn)而可比較f(2018),f(2019),f(2020)的大。

          ∵函數(shù) fx)滿足:

          f(2﹣x)=fx),故函數(shù)的圖象關(guān)于直線x=1對(duì)稱;

          fx+4)=fx),故函數(shù)的周期為4;

          x1,x2[1,3]時(shí),(x1x2)[fx1)﹣fx2)]<0.故函數(shù)在[1,3]上為減函數(shù);

          f(2018)=f(2),

          f(2019)=f(3),

          f(2020)=f(0)=f(2),

          f(2020)=f(2018)>f(2019),

          故選:C

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),.

          (1)當(dāng)時(shí),若關(guān)于的不等式恒成立,求的取值范圍;

          (2)當(dāng)時(shí),證明: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生細(xì)心程度的關(guān)系,在本校隨機(jī)調(diào)查了100名學(xué)生進(jìn)行研究.研究結(jié)果表明:在數(shù)學(xué)成績(jī)及格的50名學(xué)生中有40人比較細(xì)心,另外10人比較粗心;在數(shù)學(xué)成績(jī)不及格的50名學(xué)生中有20人比較細(xì)心,另外30人比較粗心.

          1)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表:

          數(shù)學(xué)成績(jī)及格

          數(shù)學(xué)成績(jī)不及格

          合計(jì)

          比較細(xì)心

          40

          比較粗心

          合計(jì)

          50

          100

          2)能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為學(xué)生的數(shù)學(xué)成績(jī)與細(xì)心程度有關(guān)系?

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          參考公式:,其中.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,棱形的邊長(zhǎng)為6, ,.將棱形沿對(duì)角線折起,得到三棱錐,點(diǎn)是棱的中點(diǎn), .

          (Ⅰ)求證:∥平面;

          (Ⅱ)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合,橢圓的左、右頂點(diǎn)分別為,是橢圓上一點(diǎn),記直線的斜率為、,且有.

          1)求橢圓的方程;

          2)若過(guò)點(diǎn)的直線與橢圓相交于不同兩點(diǎn),且滿足為坐標(biāo)原點(diǎn)),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓過(guò)點(diǎn)P21).

          1)求橢圓C的方程,并求其離心率;

          2)過(guò)點(diǎn)Px軸的垂線l,設(shè)點(diǎn)A為第四象限內(nèi)一點(diǎn)且在橢圓C上(點(diǎn)A不在直線l上),點(diǎn)A關(guān)于l的對(duì)稱點(diǎn)為A',直線A'PC交于另一點(diǎn)B.設(shè)O為原點(diǎn),判斷直線AB與直線OP的位置關(guān)系,并說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在平面直角坐標(biāo)系,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為直線與曲線交于兩點(diǎn).

          (1)求直線l的普通方程和曲線的直角坐標(biāo)方程;

          (2)已知點(diǎn)的極坐標(biāo)為,的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐PABCD中,已知底面ABCD是邊長(zhǎng)為1的正方形,側(cè)面PAD⊥平面ABCDPAPD,PA與平面PBC所成角的正弦值為

          1)求側(cè)棱PA的長(zhǎng);

          2)設(shè)EAB中點(diǎn),若PA≥AB,求二面角BPCE的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線x=﹣2上有一動(dòng)點(diǎn)Q,過(guò)點(diǎn)Q作直線l,垂直于y軸,動(dòng)點(diǎn)P在l1上,且滿足(O為坐標(biāo)原點(diǎn)),記點(diǎn)P的軌跡為C.

          (1)求曲線C的方程;

          (2)已知定點(diǎn)M(,0),N(,0),點(diǎn)A為曲線C上一點(diǎn),直線AM交曲線C于另一點(diǎn)B,且點(diǎn)A在線段MB上,直線AN交曲線C于另一點(diǎn)D,求△MBD的內(nèi)切圓半徑r的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案