【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)設(shè),且
,求證:
.
【答案】(1)討論見(jiàn)解析(2)證明見(jiàn)解析
【解析】
(1)求出函數(shù)的定義域以及函數(shù)的導(dǎo)數(shù),然后根據(jù)
的正負(fù)性進(jìn)行分類討論,求出函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求出函數(shù)
的導(dǎo)數(shù),可以確定
的單調(diào)性,設(shè)
,可以證明出
,根據(jù)
,可以證明出
,根據(jù)同角的三角函數(shù)關(guān)系式可以得到
,最后根據(jù)余弦函數(shù)的單調(diào)性進(jìn)行證明即可.
(1)的定義域?yàn)?/span>
,
,
當(dāng)時(shí),
恒成立,
在
上單調(diào)遞減;
當(dāng)時(shí),由
解得
,由
解得
,所以
在
上單調(diào)遞增,在
上單調(diào)遞減.
綜上所述,當(dāng)時(shí),
在
上單調(diào)遞減;當(dāng)
時(shí),
在
上單調(diào)遞增,在
上單調(diào)遞減;
(2)當(dāng)時(shí),
,
,則
在
上單調(diào)遞增.設(shè)
,且
,則
,即
,所以
,可得
.因?yàn)?/span>
,所以
,所以
,即
.因?yàn)?/span>
,所以
,所以
,所以
.綜上可得,
,且
,即
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某部門共有4名員工, 某次活動(dòng)期間, 周六、 周日的上午、 下午各需要安排一名員工值班,若規(guī)定同一天的兩個(gè)值班崗位不能安排給同一名員工, 則該活動(dòng)值班崗位的不同安排方式共有( )
A.120種B.132種C.144種D.156種
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知集合,集合
,
,
滿足.
①每個(gè)集合都恰有5個(gè)元素
②
集合中元素的最大值與最小值之和稱為集合
的特征數(shù),記為
,則
的值不可能為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是定義在
上的函數(shù),滿足
.
(1)證明:2是函數(shù)的周期;
(2)當(dāng)時(shí),
,求
在
時(shí)的解析式,并寫出
在
(
)時(shí)的解析式;
(3)對(duì)于(2)中的函數(shù),若關(guān)于x的方程
恰好有20個(gè)解,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《算法統(tǒng)宗》全稱《新編直指算法統(tǒng)宗》,是屮國(guó)古代數(shù)學(xué)名著,程大位著.書中有如下問(wèn)題:“今有五人均銀四十兩,甲得十兩四錢,戊得五兩六錢.問(wèn):次第均之,乙丙丁各該若干?”意思是:有5人分40兩銀子,甲分10兩4錢,戊分5兩6錢,且相鄰兩項(xiàng)差相等,則乙丙丁各分幾兩幾錢?(注:1兩等于10錢)( )
A.乙分8兩,丙分8兩,丁分8兩B.乙分8兩2錢,丙分8兩,丁分7兩8錢
C.乙分9兩2錢,丙分8兩,丁分6兩8錢D.乙分9兩,丙分8兩,丁分7兩
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C上的點(diǎn)到點(diǎn)
的距離與它到直線
的距離之比為
,圓O的方程為
,曲線C與x軸的正半軸的交點(diǎn)為A,過(guò)原點(diǎn)O且異于坐標(biāo)軸的直線與曲線C交于B,C兩點(diǎn),直線AB與圓O的另一交點(diǎn)為P,直線PD與圓O的另一交點(diǎn)為Q,其中
,設(shè)直線AB,AC的斜率分別為
;
(1)求曲線C的方程,并證明到點(diǎn)M的距離
;
(2)求的值;
(3)記直線PQ,BC的斜率分別為、
,是否存在常數(shù)
,使得
?若存在,求
的值,若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某基地蔬菜大棚采用水培、無(wú)土栽培方式種植各類蔬菜.過(guò)去50周的資料顯示,該地周光照量(小時(shí))都在30小時(shí)以上,其中不足50小時(shí)的周數(shù)有5周,不低于50小時(shí)且不超過(guò)70小時(shí)的周數(shù)有35周,超過(guò)70小時(shí)的周數(shù)有10周.根據(jù)統(tǒng)計(jì),該基地的西紅柿增加量
(百斤)與使用某種液體肥料
(千克)之間對(duì)應(yīng)數(shù)據(jù)為如圖所示的折線圖.
(1)依據(jù)數(shù)據(jù)的折線圖,是否可用線性回歸模型擬合與
的關(guān)系?請(qǐng)計(jì)算相關(guān)系數(shù)
并加以說(shuō)明(精確到0.01).(若
,則線性相關(guān)程度很高,可用線性回歸模型擬合)
(2)蔬菜大棚對(duì)光照要求較大,某光照控制儀商家為該基地提供了部分光照控制儀,但每周光照控制儀最多可運(yùn)行臺(tái)數(shù)受周光照量限制,并有如下關(guān)系:
周光照量 | |||
光照控制儀最多可運(yùn)行臺(tái)數(shù) | 3 | 2 | 1 |
若某臺(tái)光照控制儀運(yùn)行,則該臺(tái)光照控制儀周利潤(rùn)為3000元;若某臺(tái)光照控制儀未運(yùn)行,則該臺(tái)光照控制儀周虧損1000元.若商家安裝了3臺(tái)光照控制儀,求商家在過(guò)去50周周總利潤(rùn)的平均值.
附:相關(guān)系數(shù)公式,參考數(shù)據(jù)
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知設(shè)函數(shù).
(1)若,求
極值;
(2)證明:當(dāng),
時(shí),函數(shù)
在
上存在零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)又本:
與
軸交于點(diǎn)
,過(guò)點(diǎn)
作直線
,交
軸于點(diǎn)
,點(diǎn)
滿足
,
的軌跡為
.
(1)求的方程;
(2)已知點(diǎn),點(diǎn)
,過(guò)
作斜率為
的直線交
于
,
兩點(diǎn),延長(zhǎng)
,
分別交
于
,
兩點(diǎn),記直線
的斜率為
,求證:
為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com