日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】為研究女高中生身高與體重之間的關系,一調(diào)查機構(gòu)從某中學中隨機選取8名女高中生,其身高和體重數(shù)據(jù)如下表所示:

          編號

          1

          2

          3

          4

          5

          6

          7

          8

          身高

          164

          160

          158

          172

          162

          164

          174

          166

          體重

          60

          46

          43

          48

          48

          50

          61

          52

          該調(diào)查機構(gòu)繪制出該組數(shù)據(jù)的散點圖后分析發(fā)現(xiàn),女高中生的身高與體重之間有較強的線性相關關系.

          1)調(diào)查員甲計算得出該組數(shù)據(jù)的線性回歸方程為,請你據(jù)此預報一名身高為的女高中生的體重;

          2)調(diào)查員乙仔細觀察散點圖發(fā)現(xiàn),這8名同學中,編號為14的兩名同學對應的點與其他同學對應的點偏差太大,于是提出這樣的數(shù)據(jù)應剔除,請你按照這名調(diào)查人員的想法重新計算線性回歸話中,并據(jù)此預報一名身高為的女高中生的體重;

          3)請你分析一下,甲和乙誰的模型得到的預測值更可靠?說明理由.

          附:對于一組數(shù)據(jù),其回歸方程的斜率和截距的最小二乘法估計分別為:.

          【答案】(1)一名身高為的女大學生的體重約為(2)回歸方程為,一名身高為的女大學生的體重約為(3)乙的模型得到的預測值更可靠,詳見解析

          【解析】

          1)計算平均數(shù),求出,即可求出回歸方程;把178代入即可求出的女大學生的體重;

          2)根據(jù)余下的數(shù)據(jù)計算平均數(shù),求出,,即可求出回歸方程;代入公式,即可求出身高為的女大學生的體重;

          3)從散點圖以及計算數(shù)據(jù)兩個方面來分析甲和乙誰的方程可靠.

          解:(1)經(jīng)計算:,

          于是:,

          則該組數(shù)據(jù)的線性回歸方程為

          時,

          于是:一名身高為的女大學生的體重約為;

          2)按照調(diào)查人員乙的想法,剩下的數(shù)據(jù)如下表所示:

          編號

          2

          3

          5

          6

          7

          8

          身高

          160

          158

          162

          164

          174

          166

          體重

          46

          43

          48

          50

          61

          52

          經(jīng)計算:,

          于是:

          則該組數(shù)據(jù)的線性回歸方程為,

          時,,

          于是:一名身高為的女大學生的體重約為

          3)乙的模型得到的預測值更可靠,

          理由如下:從散點圖可以看出,第一組數(shù)據(jù)和第四組數(shù)據(jù)確實偏差較大,為更準確的刻畫變化趨勢,有必要把這兩個數(shù)據(jù)剔除掉;

          從計算結(jié)果來看,相對于第七組數(shù)據(jù)的女大學生體重,甲對身高的女大學生的預測值明顯偏低,而利用乙的回歸方程得到的預測值增幅較合理.

          (以上給出了兩種理由,考生答出其中任意一種或其他合理理由均可得分)

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          【題目】給出下列說法:

          1)命題的否定形式是,;

          2)已知,則;

          3)已知回歸直線的斜率的估計值是2,樣本點的中心為,則回歸直線方程為;

          4)對分類變量的隨機變量的觀測值來說,越小,判斷有關系的把握越大;

          5)若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變.

          其中正確說法的個數(shù)為(

          A.2B.3C.4D.5

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知關于的方程上恰有3個解,存在,使不等式成立.

          (1)若為真命題,求正數(shù)的取值范圍;

          (2)若為真命題,且為假命題,求正數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】黃金分割比例具有嚴格的比例性,藝術性,和諧性,蘊含著豐富的美學價值.這一比值能夠引起人們的美感,被稱為是建筑和藝術中最理想的比例.我們把離心率的橢圓稱為“黃金橢圓”,則以下四種說法中正確的個數(shù)為(

          ①橢圓是“黃金橢圓;

          ②若橢圓,的右焦點且滿足,則該橢圓為“黃金橢圓”;

          ③設橢圓,的左焦點為F,上頂點為B,右頂點為A,若,則該橢圓為“黃金橢圓”;

          ④設橢圓,,的左右頂點分別A,B,左右焦點分別是,,若,成等比數(shù)列,則該橢圓為“黃金橢圓”;

          A.1B.2C.3D.4

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓與拋物線有一個相同的焦點,且該橢圓的離心率為,

          (Ⅰ)求該橢圓的標準方程:

          (Ⅱ)求過點的直線與該橢圓交于A,B兩點,O為坐標原點,若,求的面積.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】 表示從左到右依次排列的9盞燈,現(xiàn)制定開燈與關燈的規(guī)則如下:

          (1)對一盞燈進行開燈或關燈一次叫做一次操作;

          (2)燈在任何情況下都可以進行一次操作;對任意的,要求燈的左邊有且只有是開燈狀態(tài)時才可以對燈進行一次操作.如果所有燈都處于開燈狀態(tài),那么要把燈關閉最少需要_____次操作;如果除燈外,其余8盞燈都處于開燈狀態(tài),那么要使所有燈都開著最少需要_____次操作.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】(多選)已知函數(shù),其中正確結(jié)論的是( )

          A.時,函數(shù)有最大值.

          B.對于任意的,函數(shù)一定存在最小值.

          C.對于任意的,函數(shù)上的增函數(shù).

          D.對于任意的,都有函數(shù).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】我國古代數(shù)學專著《九章算術》中有一個“兩鼠穿墻題”,其內(nèi)容為:“今有垣厚五尺,兩鼠對穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半.問何日相逢?各穿幾何?”如圖的程序框圖源于這個題目,執(zhí)行該程序框圖,若輸入x=20,則輸出的結(jié)果為( 。

          A. 3B. 4C. 5D. 6

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知單調(diào)遞增的等比數(shù)列滿足,且的等差中項.

          (Ⅰ)求數(shù)列的通項公式;

          (Ⅱ)若,對任意正數(shù)數(shù), 恒成立,試求的取值范圍.

          查看答案和解析>>

          同步練習冊答案