日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖(1),邊長為2的正方形ABEF中,D,C分別為EF,AF上的點(diǎn),且ED=CF,現(xiàn)沿DC把△CDF剪切、拼接成如圖(2)的圖形,再將△BEC,△CDF,△ABD沿BC,CD,BD折起,使E,F(xiàn),A三點(diǎn)重合于點(diǎn)A′.
          (1)求證:BA′⊥CD;
          (2)求四面體B-A′CD體積的最大值.

          【答案】分析:(1)通過折疊前與折疊后直線與直線的垂直,證明BA′⊥平面A′CD,然后證明BA′⊥CD.
          (2)設(shè)A′C=x(0<x<2),得到A′D=2-x.求出S△A′CD=x(2-x).然后推出VB-A′CD的表達(dá)式,利用二次函數(shù)求出體積最大值.
          解答:(1)證明:折疊前,BE⊥EC,BA⊥AD,折疊后BA′⊥A′C,BA′⊥A′D,
          又A′C∩A′D=A′,
          所以BA′⊥平面A′CD,
          因?yàn)镃D?平面A′CD,
          因此BA′⊥CD.(4分)
          (2)解:設(shè)A′C=x(0<x<2),則A′D=2-x.因此S△A′CD=x(2-x).(8分)
          ∴VB-A′CD=S△A′CD==
          所以當(dāng)x=1時(shí),四面體B-A′CD體積的最大值為.(12分)
          點(diǎn)評(píng):本題考查直線與平面垂直的判定定理的應(yīng)用,幾何體的體積的求法,考查邏輯推理能力與計(jì)算能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖(1),邊長為2的正方形ABEF中,D,C分別為EF,AF上的點(diǎn),且ED=CF,現(xiàn)沿DC把△CDF剪切、拼接成如圖(2)的圖形,再將△BEC,△CDF,△ABD沿BC,CD,BD折起,使E,F(xiàn),A三點(diǎn)重合于點(diǎn)A′.
          (1)求證:BA′⊥CD;
          (2)求四面體B-A′CD體積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖(1),邊長為2的正方形ABEF中,D,C分別為EF,AF上的點(diǎn),且ED=CF,現(xiàn)沿DC把△CDF剪切、拼接成如圖(2)的圖形,再將△BEC,△CDF,△ABD沿BC,CD,BD折起,使E,F(xiàn),A三點(diǎn)重合于點(diǎn)A′.
          (1)求證:BA′⊥CD;
          (2)求四面體B-A′CD體積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省衡水中學(xué)高一(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          如圖(1),邊長為2的正方形ABEF中,D,C分別為EF,AF上的點(diǎn),且ED=CF,現(xiàn)沿DC把△CDF剪切、拼接成如圖(2)的圖形,再將△BEC,△CDF,△ABD沿BC,CD,BD折起,使E,F(xiàn),A三點(diǎn)重合于點(diǎn)A′.
          (1)求證:BA′⊥CD;
          (2)求四面體B-A′CD體積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河北省衡水中學(xué)高一(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

          如圖(1),邊長為2的正方形ABEF中,D,C分別為EF,AF上的點(diǎn),且ED=CF,現(xiàn)沿DC把△CDF剪切、拼接成如圖(2)的圖形,再將△BEC,△CDF,△ABD沿BC,CD,BD折起,使E,F(xiàn),A三點(diǎn)重合于點(diǎn)A′.
          (1)求證:BA′⊥CD;
          (2)求四面體B-A′CD體積的最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案