日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知?jiǎng)訄A過定點(diǎn)A(2,0),且與直線X=-2相切.
          (1)求動(dòng)圓圓心的軌跡C的方程;
          (2)是否存在過點(diǎn)(0,1)的直線l,與軌跡C交于P,Q兩點(diǎn),且以線段PQ為直徑的圓過定點(diǎn)A?若存在,求出直線l的方程;若不存在,說明理由.
          (1)由題意可知,圓心到定點(diǎn)A(2,0)的距離與到定直線X=-2的距離相等,
          由拋物線定義可知,軌跡C為以A(2,0)為焦點(diǎn),X=-2為準(zhǔn)線的拋物線,
          ∴p=2,∴拋物線方程為y2=8x                  …(4分)
          (2)假設(shè)存在直線l符合題意.…(5分)
          由題意易知,直線l的斜率k存在且不為零,
          又因過點(diǎn)(0,1),故設(shè)直線l的方程為y=kx+1,…(6分)
          聯(lián)立直線與拋物線方程得
          y=kx+1
          y2=8x
          ,消元整理得k2x2+(2k-8)x+1=0,
          設(shè)交點(diǎn)坐標(biāo)為P(x1,y1),Q(x2,y2),則△=(2k-8)2-4k2>0,∴k<2 ①
          且x1+x2=-
          2k-8
          k2
          x1x2=
          1
          k2
          ;                                         …(9分)
          AP
          AQ
          =(x1-2,y1)•(x2-2,y2)=(k2+1)x1x2+(k-2)(x1+x2)+5
          =(k2+1)•
          1
          k2
          +(k-2)•(-
          2k-8
          k2
          )+5=
          4k2+12k-15
          k2
          =0
          ∴k=-
          3
          2
          ±
          6
          符合①,…(12分)
          所以存在符合題意的直線l,其方程為y=(-
          3
          2
          ±
          6
          )x+1.…(13分)
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知?jiǎng)訄A過定點(diǎn)A(4,0),且在y軸上截得的弦MN的長(zhǎng)為8.
          (1)求動(dòng)圓圓心的軌跡C的方程;
          (2)若軌跡C與圓M:(x-5)2+y2=r2(r>0)相交于A、B、C、D四個(gè)點(diǎn),求r的取值范圍;
          (3)已知點(diǎn)B(-1,0),設(shè)不垂直于x軸的直線l與軌跡C交于不同的兩點(diǎn)P,Q,若x軸是∠PBQ的角平分線,證明直線l過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知?jiǎng)訄A過定點(diǎn)A(1,0),且與直線x=-1相切.
          (1)求動(dòng)圓的圓心軌跡C的方程;
          (2)若直線l過點(diǎn)A,并與軌跡C交于P,Q兩點(diǎn),且滿足
          PA
          =3
          AQ
          ,求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•永州一模)已知?jiǎng)訄A過定點(diǎn)A(2,0),且與直線X=-2相切.
          (1)求動(dòng)圓圓心的軌跡C的方程;
          (2)是否存在過點(diǎn)(0,1)的直線l,與軌跡C交于P,Q兩點(diǎn),且以線段PQ為直徑的圓過定點(diǎn)A?若存在,求出直線l的方程;若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013年湖南省永州市高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

          已知?jiǎng)訄A過定點(diǎn)A(2,0),且與直線X=-2相切.
          (1)求動(dòng)圓圓心的軌跡C的方程;
          (2)是否存在過點(diǎn)(0,1)的直線l,與軌跡C交于P,Q兩點(diǎn),且以線段PQ為直徑的圓過定點(diǎn)A?若存在,求出直線l的方程;若不存在,說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案