日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直三棱柱ABC-A′B′C′中,AA′=AB=BC=1,∠ABC=90°.棱A′C′上有兩個動點E,F(xiàn),且EF=a (a為常數(shù)).
          (Ⅰ)在平面ABC內(nèi)確定一條直線,使該直線與直線CE垂直;
          (Ⅱ)判斷三棱錐B-CEF的體積是否為定值.若是定值,求出這個三棱錐的體積;若不是定值,說明理由.

          【答案】分析:(I)先取AC中點D,連接BD.利用△ABC為等腰三角形,得出BD⊥AC,再根據(jù)ABC-A′B′C′是直三棱柱,得到BD⊥AA′,利用線面垂直的判定定理得直線BD⊥平面ACC′A′從而有BD⊥CE,故直線BD即為所求.
          (Ⅱ)根據(jù)ABC-A′B′C′是直三棱柱,有CC′⊥平面A′B′C′,利用線面垂直的性質(zhì)定理得到CC′⊥EF,從而有△CEF的邊EF上的高為線段CC′,從而得到△CEF的面積S是常數(shù),由(Ⅰ)可知,BD⊥平面ACC′A′,故BD為三棱錐B-CEF的高,最后利用三棱錐的體積公式求出三棱錐B-CEF的體積V為定值.
          解答:解:(Ⅰ)取AC中點D,連接BD.
          ∵AB=BC,∴△ABC為等腰三角形,D為底邊AC中點,∴BD⊥AC.
          ∵ABC-A′B′C′是直三棱柱,∴AA′⊥平面ABC,
          ∵BD?平面ABC,∴BD⊥AA′.
          又AA′∩AC=A,∴直線BD⊥平面ACC′A′.
          ∵CE?平面ACC′A′,∴BD⊥CE
          ∴直線BD即為所求.------(5分)
          (Ⅱ)∵ABC-A′B′C′是直三棱柱,
          ∴CC′⊥平面A′B′C′,
          ∵EF?平面A′B′C′,∴CC′⊥EF
          ∴△CEF的邊EF上的高為線段CC′,
          由已知條件得CC′=AA′=1,且EF=a(常數(shù)),
          故△CEF的面積S=EF•CC′=a
          由(Ⅰ)可知,BD⊥平面ACC′A′,故BD為三棱錐B-CEF的高.
          在等腰三角形ABC中,可求得BD=,
          ∴三棱錐B-CEF的體積V=S•BD=為定值.------(10分)
          點評:本題主要考查了線面平行與線面垂直的判定定理的應(yīng)用,注意線線關(guān)系與線面關(guān)系的相互轉(zhuǎn)化,本題主要考查了應(yīng)用面面垂直的性質(zhì)證明線面垂直,以及三棱錐體積公式的應(yīng)用.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值; 

          (Ⅲ)求點C到平面B1DP的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試理科數(shù)學(xué) 題型:解答題

           

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

          P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點C到平面B1DP的距離.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

          P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點C到平面B1DP的距離.

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題

          如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
          (I)求證:CD=C1D;
          (II)求二面角A-A1D-B的平面角的余弦值;
          (Ⅲ)求點C到平面B1DP的距離

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;

          (Ⅲ)求點C到平面B1DP的距離.

          查看答案和解析>>

          同步練習(xí)冊答案