日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知實(shí)數(shù)a,b,c滿足a+b+c=1,a2+b2+c2=3,則abc的最大值為
          5
          27
          5
          27
          分析:由條件可得 1=(a+b+c)2,化簡(jiǎn)可得ab+bc+ac=-1.求得ab=c2-c-1,又a+b=1-c,可得a和b是關(guān)于x的方程 x2+(c-1)x+(c2-c-1)=0的兩根.由△≥0,解得-1≤c≤
          5
          3
          .a(chǎn)bc=c3-c2-c.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,由函數(shù)的單調(diào)性求函數(shù)的最值.
          解答:解:由a+b+c=1,a2+b2+c2=3 可得
          1=(a+b+c)2=a2+b2+c2 +2ab+2bc+2ac=3+(2ab+2bc+2ac ),故有 ab+bc+ac=-1.
          ∴-1=ab+c(a+b)=ab+c(1-c),∴ab=c2-c-1.
          又a+b=1-c,∴由韋達(dá)定理可知,a和b是關(guān)于x的方程 x2+(c-1)x+(c2-c-1)=0的兩根.
          ∴△=(c-1)2-4(c2-c-1)≥0,整理可得3c2-2c-5≤0,解得-1≤c≤
          5
          3

          再由ab=c2-c-1,可得abc=c3-c2-c.
          構(gòu)造函數(shù)f(x)=x3-x2-x,-1≤x≤
          5
          3
          ,
          求導(dǎo)可得 f'(x)=3x2-2x-1=(x-1)(3x+1),令f′(x)=0,可得x=-
          1
          3
          ,或 x=1.
          在[-1,-
          1
          3
          )、[1,
          5
          3
          )上,f′(x)>0,f(x)是增函數(shù).
          在(-
          1
          3
          ,1)上,f′(x)<0,f(x)是減函數(shù).
          ∴f(x)max=max{f(-
          1
          3
          ),f(
          5
          3
          )}=
          5
          27
          ,
          ∴(abc)max=
          5
          27
          ,
          故答案為
          5
          27
          點(diǎn)評(píng):本題主要考查二次函數(shù)的性質(zhì)、韋達(dá)定理,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,由函數(shù)的單調(diào)性求函數(shù)的最值,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)滿足,對(duì)于任意的實(shí)數(shù)都滿,若,則函數(shù)的解析式為(   )

                 A.           B.  C.          D.

           

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案