【題目】如圖,在直角梯形中,
,
,
.直角梯形
可以通過直角梯形
以直線
為軸旋轉(zhuǎn)得到,且平面
平面
.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2017/12/20/1842736631291904/1845869604462592/STEM/592e486e595e40bf846fae2bfa16ac59.png]
(I)求證: .
(II)求直線和平面
所成角的正弦值.
(III)設(shè)為
的中點(diǎn),
,
分別為線段
,
上的點(diǎn)(都不與點(diǎn)
重合).若直線
平面
,求
的長(zhǎng).
【答案】(I)見解析;(II);(III)
.
【解析】試題分析:(I)由面面垂直定理得面
,由線面垂直定理即可得出
.
(II)以A為原點(diǎn)建立空間直角坐標(biāo)系,設(shè)平面的一個(gè)法向量為
,令
,
,即可求出直線
和平面
所成角的正弦值.
(III)設(shè),由
,表示
,
,
由,,求得
,,即可求出MH的長(zhǎng).
試題解析:(I)∵,
∴,
∵平面平面
且平面
平面
,
∴面
,
∵平面
,
∴.
(II)由(I)知, 平面
,
∴,
,
∵,
,
,
兩兩垂直,
如圖,以為原點(diǎn)建立空間直角坐標(biāo)系,
∵,
,
,
,
,
,
.
設(shè)平面的一個(gè)法向量為
,
∴,
∴,
令,
,
設(shè)直線與平面
所成角為
,
∵,
,
.
(III)在以為原點(diǎn)的空間直角坐標(biāo)系中,
,
,
,
,
.
設(shè),
,
∵,
∴,
,
,
若平面
,
則,即
,
,解得
,
∴,
.
點(diǎn)睛:高考對(duì)空間向量與立體幾何的考查主要體現(xiàn)在以下幾個(gè)方面:①求異面直線所成的角,關(guān)鍵是轉(zhuǎn)化為兩直線的方向向量的夾角;②求直線與平面所成的角,關(guān)鍵是轉(zhuǎn)化為直線的方向向量和平面的法向量的夾角;③求二面角,關(guān)鍵是轉(zhuǎn)化為兩平面的法向量的夾角.建立空間直角坐標(biāo)系和表示出所需點(diǎn)的坐標(biāo)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)
的圖象在
處的切線方程;
(2)若函數(shù)在定義域上為單調(diào)增函數(shù).
①求最大整數(shù)值;
②證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人進(jìn)行射擊比賽,各射擊局,每局射擊
次,射擊命中目標(biāo)得
分,未命中目標(biāo)得
分,兩人
局的得分情況如下:
甲 | ||||
乙 |
(Ⅰ)若從甲的局比賽中,隨機(jī)選取
局,求這
局的得分恰好相等的概率.
(Ⅱ)如果,從甲、乙兩人的
局比賽中隨機(jī)各選取
局,記這
局的得分和為
,求
的分布列和數(shù)學(xué)期望.
(Ⅲ)在局比賽中,若甲、乙兩人的平均得分相同,且乙的發(fā)揮更穩(wěn)定,寫出
的所有可能取值.(結(jié)論不要求證明)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個(gè)命題:
①將,
,
三種個(gè)體按3:1:2的比例分層抽樣調(diào)查,若抽取的
個(gè)體為12個(gè),則樣本容量為30;
②一組數(shù)據(jù)1、2、3、4、5的平均數(shù)、中位數(shù)相同;
③甲組數(shù)據(jù)的方差為5,乙組數(shù)據(jù)為5、6、9、10、5,那么這兩組數(shù)據(jù)中較穩(wěn)定的是甲;
④統(tǒng)計(jì)的10個(gè)樣本數(shù)據(jù)為95,105,114,116,120,120,122,125,130,134,則樣本數(shù)據(jù)落在內(nèi)的頻率為0.4.
其中真命題為( )
A. ①② B. ②③ C. ③④ D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直三棱柱中,
,
,
是
的中點(diǎn),
是等腰三角形,
為
的中點(diǎn),
為
上一點(diǎn).
(I)若平面
,求
;
(II)平面將三棱柱
分成兩個(gè)部分,求較小部分與較大部分的體積之比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)中學(xué)生的身體發(fā)育狀況,擬采用分層抽樣的方法從甲、乙、丙三所中學(xué)抽取個(gè)教學(xué)班進(jìn)行調(diào)查.已知甲、乙、丙三所中學(xué)分別有
,
,
個(gè)教學(xué)班.
(Ⅰ)求從甲、乙、丙三所中學(xué)中分別抽取的教學(xué)班的個(gè)數(shù).
(Ⅱ)若從抽取的個(gè)教學(xué)班中隨機(jī)抽取
個(gè)進(jìn)行調(diào)查結(jié)果的對(duì)比,求這
個(gè)教學(xué)班中至少有一個(gè)來自甲學(xué)校的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(
),將
的圖象向左平移
個(gè)單位長(zhǎng)度后得到
的圖象,且
在區(qū)間
內(nèi)的最大值為
.
(1)求實(shí)數(shù)的值;
(2)在中,內(nèi)角
,
,
的對(duì)邊分別是
,
,
,若
,且
,求
的周長(zhǎng)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:
的離心率為
,過其右焦點(diǎn)
與長(zhǎng)軸垂直的直線與橢圓在第一象限相交于點(diǎn)
,
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的左頂點(diǎn)為
,右頂點(diǎn)為
,點(diǎn)
是橢圓上的動(dòng)點(diǎn),且點(diǎn)
與點(diǎn)
,
不重合,直線
與直線
相交于點(diǎn)
,直線
與直線
相交于點(diǎn)
,求證:以線段
為直徑的圓恒過定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com