日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知兩個(gè)命題r(x):sin x+cos x>m,s(x):x2+mx+1>0.如果對(duì)?x∈R,r(x)與s(x)有且僅有一個(gè)是真命題,求實(shí)數(shù)m的取值范圍.
          【答案】分析:若對(duì)?x∈R,r(x)與s(x)有且僅有一個(gè)是真命題,則使兩個(gè)命題成立的實(shí)數(shù)m的范圍,不可能同時(shí)滿足,也不可能同時(shí)不滿足,使兩個(gè)命題成立的實(shí)數(shù)m的范圍,然后構(gòu)造關(guān)于m的不等式,即可得到答案.
          解答:解:∵sinx+cosx=sin(x+)≥-,
          ∴當(dāng)r(x)是真命題時(shí),m<-
          又∵對(duì)?x∈R,s(x)為真命題,即x2+mx+1>0恒成立,有△=m2-4<0,∴-2<m<2.
          ∴當(dāng)r(x)為真,s(x)為假時(shí),m<-,
          同時(shí)m≤-2或m≥2,即m≤-2,
          當(dāng)r(x)為假,s(x)為真時(shí),m≥-且-2<m<2,
          即-≤m<2.
          綜上所述,m的取值范圍是m≤-2或-≤m<2.
          點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是命題的真假判斷與應(yīng)用,其中使兩個(gè)命題成立的實(shí)數(shù)m的范圍,是解答本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知兩個(gè)命題r(x):sin x+cos x>m,s(x):x2+mx+1>0.如果對(duì)?x∈R,r(x)與s(x)有且僅有一個(gè)是真命題,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知兩個(gè)命題r(x):sinx+cosx>m,s(x):x2+mx+1>0.如果對(duì)?x∈R,r(x)與s(x)有且僅有一個(gè)是真命題.求實(shí)數(shù)m的取值范圍
          {m|m≤-2或-
          2
          ≤m<2}
          {m|m≤-2或-
          2
          ≤m<2}

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省安慶市望江中學(xué)高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知兩個(gè)命題r(x):sin x+cos x>m,s(x):x2+mx+1>0.如果對(duì)?x∈R,r(x)與s(x)有且僅有一個(gè)是真命題,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江西省贛州市上猶三中高二(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

          已知兩個(gè)命題r(x):sin x+cos x>m,s(x):x2+mx+1>0.如果對(duì)?x∈R,r(x)與s(x)有且僅有一個(gè)是真命題,求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案