(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)試判斷以PB為直徑的圓與圓x2+y2=4的位置關(guān)系,并說(shuō)明理由.
解:(1)由點(diǎn)M是BN中點(diǎn),又·
=0,
可知PM垂直平分BN,所以|PN|=|PB|.
又|PA|+|PN|=|AN|,所以|PA|+|PB|=4.
由橢圓定義知,點(diǎn)P的軌跡是以A,B為焦點(diǎn)的橢圓.
設(shè)橢圓方程為+
=1,
由2a=4,2c=2,可得a2=4,b2=3.
可知?jiǎng)狱c(diǎn)P的軌跡方程為=1.
(2)設(shè)點(diǎn)P(x0,y0),PB的中點(diǎn)為Q,則Q(,
),
|PB|==
=
=2
x0,
即以PB為直徑的圓的圓心為Q(,
),半徑為r1=1-
x0.
又圓x2+y2=4的圓心為O(0,0),半徑r2=2,又|OQ|=
==
=1+
x0,
故|OQ|=r2-r1,即兩圓相切.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
OP |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、偶函數(shù) | B、奇函數(shù) | C、不是奇函數(shù),也不是偶函數(shù) | D、奇偶性與k有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
6 |
1 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
試問(wèn):是否存在定點(diǎn)E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com