日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓C: + =1(a>b>0)的離心率為 ,右焦點(diǎn)為F,右頂點(diǎn)為E,P為直線x= a上的任意一點(diǎn),且( + =2.

          (Ⅰ)求橢圓C的方程;
          (Ⅱ)過F垂直于x軸的直線AB與橢圓交于A,B兩點(diǎn)(點(diǎn)A在第一象限),動(dòng)直線l與橢圓C交于M,N兩點(diǎn),且M,N位于直線AB的兩側(cè),若始終保持∠MAB=∠NAB,求證:直線MN的斜率為定值.

          【答案】解:(I)F(c,0),E(a,0),設(shè)P( ,y),

          =( ,﹣2y), =(c﹣a,0),

          ∴( + =(c﹣ )(c﹣a)=2,

          ∵橢圓的離心率e= ,∴a=2c,

          ∴c=1,a=2,b= = ,

          ∴橢圓C的方程為: =1.

          (Ⅱ)直線AB的方程為x=1,代入橢圓方程得y=±

          ∴A(1, ),

          設(shè)直線l的方程為y=kx+m,代入橢圓方程得:(3+4k2)x2+8kmx+4m2﹣12=0,

          由題意可知△>0,

          設(shè)M(x1,y1),N(x2,y2),則x1+x2= ,x1x2= ,

          ∵∠MAB=∠NAB,∴kAM+kAN=0,

          ∵kAM= = ,kAN= =

          + =2k+(k+m﹣ =2k﹣(k+m﹣ =0,

          ∴(4k﹣2)m+4k2﹣8k+3=0恒成立,

          ,解得k=

          ∴直線MN的斜率為定值


          【解析】(1)根據(jù)題意可得F(c,0),E(a,0),設(shè)P( ,y),由題中的向量關(guān)系,解出a,b,c,從而得到橢圓的方程,(2)由直線AB的方程為x=1,代入橢圓方程,得到A點(diǎn)坐標(biāo),設(shè)直線l的方程為y=kx+m,設(shè)M(x1,y1),N(x2,y2),將直線方程代入橢圓,根據(jù)韋達(dá)定理可得到x1+x2,x1x2,根據(jù)∠MAB=∠NAB,得到kAM+kAN=0,化解后得到(4k﹣2)m+4k2﹣8k+3=0恒成立,從而可得到k為定值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】點(diǎn)P是雙曲線 的右支上一點(diǎn),其左,右焦點(diǎn)分別為F1 , F2 , 直線PF1與以原點(diǎn)O為圓心,a為半徑的圓相切于A點(diǎn),線段PF1的垂直平分線恰好過點(diǎn)F2 , 則離心率的值為( 。
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個(gè)袋中有大小相同,編號(hào)分別為1,2,3,4,5的五個(gè)球,從中有放回地每次取一個(gè)球,共取3次,取得三個(gè)球的編號(hào)之和不小于13的概率為( 。
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若函數(shù) 沒有零點(diǎn),則實(shí)數(shù)a的取值范圍是

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=Acos2(ωx+φ)+1(A>0,ω>0,0<φ< )的最大值為3,f(x)的圖象與y軸的交點(diǎn)坐標(biāo)為(0,2),其相鄰兩條對(duì)稱軸間的距離為2,則f(1)+f(2)+f(3)+…+f(2016)的值為(  )
          A.2468
          B.3501
          C.4032
          D.5739

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)= x3+x2﹣3x,若方程|f(x)|2+t|f(x)|+1=0有12個(gè)不同的根,則實(shí)數(shù)t的取值范圍為( 。
          A.(﹣ ,﹣2)
          B.(﹣∞,﹣2)
          C.﹣ <t<﹣2
          D.(﹣1,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點(diǎn)F(1,0),直線l:x=﹣1,直線l'垂直l于點(diǎn)P,線段PF的垂直平分線交l'于點(diǎn)Q.
          (1)求點(diǎn)Q的軌跡方程C;
          (2)過F做斜率為 的直線交C于A,B,過B作l平行線交C于D,求△ABD外接圓的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在△ABC中, ,O為平面內(nèi)一點(diǎn),且 ,M為劣弧 上一動(dòng)點(diǎn),且 ,則p+q的最大值為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在等差數(shù)列{an}中,a3+a4=12,公差d=2,記數(shù)列{a2n﹣1}的前n項(xiàng)和為Sn
          (1)求Sn;
          (2)設(shè)數(shù)列{ }的前n項(xiàng)和為Tn , 若a2 , a5 , am成等比數(shù)列,求Tm

          查看答案和解析>>

          同步練習(xí)冊(cè)答案