日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知y=f(x)是定義在(-∞,+∞)上的偶函數(shù),當x≥0時,f(x)=x2-2x-3,則y=f(x)的解析式為
          f(x)=
          x2-2x-3(x≥0)
          x2+2x-3(x<0)
          f(x)=
          x2-2x-3(x≥0)
          x2+2x-3(x<0)
          分析:只需求出x<0時f(x)的表達式即可.設(shè)x<0,則-x>0,利用已知表達式可求出f(-x),再根據(jù)f(x)與f(-x)關(guān)系即可求解.
          解答:解:設(shè)x<0,則-x>0,
          又y=f(x)是定義在(-∞,+∞)上的偶函數(shù),當x≥0時,f(x)=x2-2x-3,
          所以f(x)=f(-x)=(-x)2-2(-x)-3=x2+2x-3.
          即x<0時,f(x)=x2+2x-3.
          故f(x)=
          x2-2x-3(x≥0)
          x2+2x-3(x<0)

          故答案為f(x)=
          x2-2x-3(x≥0)
          x2+2x-3(x<0)
          點評:本題考查了分段函數(shù)解析式的求法,要充分利用已知表達式與未知表達式的關(guān)系化未知為已知,體現(xiàn)了轉(zhuǎn)化思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=x+
          a
          x
          的定義域為(0,+∞),且f(2)=2+
          2
          2
          .設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
          (1)求a的值.
          (2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
          (3)設(shè)O為坐標原點,求四邊形OMPN面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=2x+
          5x
          的定義域為(0,+∞).設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=2x和y軸的垂線,垂足分別為M、N.
          (1)|PM|•|PN|是否為定值?若是,求出該定值;若不是,說明理由;
          (2)設(shè)點O為坐標原點,求四邊形OMPN面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x+
          ax
          的定義域為(0,+∞),a>0且當x=1時取得最小值,設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
          (1)求a的值;
          (2)問:PM•PN是否為定值?若是,則求出該定值,若不是,請說明理由;
          (3)設(shè)O為坐標原點,求四邊形OMPN面積的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=sin(2x-
          π
          6
          ),g(x)=sin(2x+
          π
          3
          ),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=x3-ax+b存在極值點.
          (1)求a的取值范圍;
          (2)過曲線y=f(x)外的點P(1,0)作曲線y=f(x)的切線,所作切線恰有兩條,切點分別為A、B.
          (。┳C明:a=b;
          (ⅱ)請問△PAB的面積是否為定值?若是,求此定值;若不是求出面積的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案