日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 把數(shù)列{2n+1}(n∈N*),依次按第1個括號一個數(shù),第2個括號兩個數(shù),第3個括號三個數(shù),第4個括號四個數(shù),第5個括號一個數(shù),…,循環(huán)為(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,則2013是第
          403
          403
          個括號內的數(shù).
          分析:括號里的數(shù)有一定規(guī)律:即每四個一組,各組里面的數(shù)都有1+2+3+4=10個數(shù).且每四個一組的第1個括號一個數(shù)構成一個首項為3公差為20的等差數(shù)列,設2013是每四個一組中第n個小組內的數(shù),根據(jù)規(guī)律即可找出n的值.
          解答:解:括號里的數(shù)有規(guī)律:即每四個一組,里面的數(shù)都是1+2+3+4=10,
          且每四個一組的第1個括號里一個數(shù)構成一個首項為3公差為20的等差數(shù)列,
          故每四個一組中第n個小組內的第一個數(shù)的通項公式為:3+20(n-1)=20n-17,
          設2013是每四個一組中第n個小組內的數(shù),
          由20n-17=2013,⇒n≈101,
          從而每四個一組中第101個小組內的第一個數(shù)是20×101-17=2003,即第401個括號內的數(shù)是2003,
          接下來,第402個括號內的數(shù)是2005,2007,
          第403個括號內的數(shù)是2009,2011,2013.
          則2013是第 403個括號內的數(shù).
          故答案為:403.
          點評:本題是等差數(shù)列的通項公式的簡單運用及等差數(shù)列的求和公式,屬于基本知識的運用,試題較易.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          把數(shù)列{2n+1}(n∈N*)依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號一個數(shù),第六個括號兩個數(shù),…循環(huán)分別為(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43)(45,47)…則第104個括號內各數(shù)之和為( 。
          A、2036B、2048C、2060D、2072

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          把數(shù)列{2n+1}依次按一項、二項、三項、四項循環(huán)分為(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100個括號內各數(shù)之和為(  )

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          把數(shù)列{2n+1}依次按第一個括號一個數(shù),第二個括號兩個數(shù),第三個括號三個數(shù),第四個括號四個數(shù),第五個括號一個數(shù),第六個括號兩個數(shù),…,循環(huán)下去,如:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),…,則第104個括號內各數(shù)字之和為
          2072
          2072

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          把數(shù)列{2n+1}(n∈N*),依次按第1個括號一個數(shù),第2個括號兩個數(shù),第3個括號三個數(shù),第4個括號四個數(shù),第5個括號一個數(shù),…,循環(huán)為(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,則第104個括號內各數(shù)之和為
          2072
          2072

          查看答案和解析>>

          同步練習冊答案